共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
采用小波图像降噪方法容易去除图像的边缘细节特征,导致关键信息丢失,提出一种有效保留图像细节的自适应图像消噪方法。采用局部二值拟合方法对图像进行二值化处理,提取图像的边缘轮廓特征并进行多尺度分割,采用局部区域梯度模特征匹配方法调整邻域的大小,对图像进行全局分割,从而有效保留了图像的细节特征,在此基础上利用变尺度的小波降噪方法实现图像自适应降噪。仿真结果表明,采用该方法进行图像消噪能有效保留图像细节特征,图像消噪输出的峰值信噪比较高,说明图像质量较好,性能优越。 相似文献
3.
4.
5.
6.
图像分割是视觉检测领域中的重要环节。由于舰船环境和图像数据的复杂性,现阶段舰船图像自动分割技术中的抗光照性能差、精度低以及边缘模糊等问题仍普遍存在。如何有效完成对舰船图像进行自动分割成为一大难题。为了有效解决上述问题,对当前图像分割方法进行深入的研究和调查,提出通过自适应阈值法的舰船图像自动分割方法,在总结和分析了现有自适应阈值分割算法存在的优点和局限性后,给出了自适应阈值图像分割法的改进方案,以便从复杂的舰船图像背景中分离出目标区域,有效解决当前图像分割技术中光照不均匀、边缘模糊等问题。为验证方法有效性进行了仿真实验,实验结果证实该方法性能效果相对较好,充分满足对复杂舰船图像进行分割的设计目标。 相似文献
7.
8.
基于最大模糊总熵准则自动选择灰度图像分割的最优阈值 总被引:4,自引:0,他引:4
图像不仅含有由统计不确定性产生的信息量,而且含有模糊不确定性产生的信息量。我们通过用来测度统计信息的香农熵为模糊总熵,开发出基于最大模糊总熵准则的最优阈值技术,它是熵阈值技术的良性拓广,实验表明它能在二值化后保留更多的图像信息,取得更好的图像分割效果。 相似文献
9.
10.
11.
传统去噪方法在去除声呐图像斑点噪声的同时,难以拥有很好的细节信息。为此,提出一种基于改进Bregman TV与数学形态学的NSCT声呐图像融合去噪技术。引入图像熵、梯度和边缘强度对Bregman TV的正则参数进行改进,在去噪过程中拥有更多的边缘细节信息。利用新的Bregman TV和数学形态学分别对声呐图像去噪,然后使用NSCT分解为高频和低频,高频拥有大量的边缘信息,低频具有图像细节信息。Bregman TV拥有很好的保边性,数学形态学拥有很好的去噪效果,将2种优势结合,因此采用Bregman TV的高频和数学形态学的低频进行NSCT逆变换,实现图像去噪。实验结果表明,该方法相比于使用基于小波变换和全变分的图像去噪、传统的Bregman TV去噪、数学形态学去噪,更能有效地降低斑点噪声,保留更多的图像细节信息。 相似文献
12.
针对传统的船舶吃水深度检测方法精准度低的情况,提出基于图像分割的船舶吃水深度检测方法。以得到精准的舰船吃水值为出发点,采集舰船吃水图像,并进行动态模板匹配,减少舰船晃动对吃水深度检测的影响,在此基础上,对船舶水尺图像字符进行校正,计算吃水线位置,得到舰船吃水深度,以此实现船舶吃水深度检测。实验对比结果表明,此次设计的基于图像分割的船舶吃水深度检测方法比传统的吃水深度检测精准度高,具有一定的实际应用意义。 相似文献
13.
14.
在介绍图像分割的主要特征的基础上,分析了目前几种典型图像分割方法。针对工件图像视觉检测中图像分割特点,提出了将边缘检测和域值分割方法相结合来分割工件图像的一种新方法,并开发了相应的软件。实验验证该方法用于工件图像测量,能很好消除图像噪声,得到连续的图像边界,并且定位较准,可以有效地提高检测系统的精度。 相似文献
15.
16.
图像分割质量直接关系到后续图像识别的准确性和运算量。为实现舰船图像高质量、高效率分割,研究一种基于多尺度特征提取的复杂舰船图像分割方法。该方法针对复杂舰船图像实施灰度化、滤波2种预处理。利用直方图均衡化法提高图像对比度,更加突出目标特征。通过高斯金字塔对图像实施多尺度分解,并提取每一级尺度图像的4种特征,归一化处理后得到特征矢量。利用均值漂移算法实现过分割,利用图论方法实现再分割,完成分割方法研究。结果表明:与阈值法、区域法和边缘法相比,本文方法应用下,Dice相似系数更大,分割重叠误差更小,说明本文方法分割性能更高,实现更为精确化和详细化的图像分割。 相似文献
17.
《江苏科技大学学报(社会科学版)》2010,24(5)
阈值法是图像分割的一种重要方法,在图像处理与目标识别中广为应用.信息熵可以表征图像的灰度信息,并用以区分图像中的目标和背景.文中研究了最大熵法的分割效果、对数熵的运算时间,然后使用指数熵代替对数熵,并对二维最大熵法进行了改进,在结合大津法的同时,加入了4邻域外像素灰度的信息.实验结果表明本文所用方法可有效缩短计算时间、突出边缘特征、提高阈值自动选择的准确性和鲁棒性. 相似文献
18.
19.
20.
传统船舶图像分割方法存在分割误差大,抗噪声干扰能力差、分割效率低等缺陷,为了解决传统船舶图像分割方法存在的不足,设计了基于模糊聚类算法的船舶图像分割方法。首先对当前船舶图像分割研究进展进行分析,指出不同传统船舶图像分割方法存在的局限性,然后对船舶图像进行去噪处理,提高船舶图像质量,改善抗噪声干扰能力,最后引入模糊聚类算法进行船舶图像分割,并采用多幅标准船舶图像与传统船舶图像分割方法进行对比测试。测试结果表明,本文方法可以对船舶图像进行高精度的准确分割,能够保留船舶图像边缘的重要信息,船舶图像分割速度可以满足实际应用的要求,获得了比传统船舶图像分割方法更优的结果,具有更加广泛的应用范围。 相似文献