首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

This paper investigates the effect of travel time variability on drivers' route choice behavior in the context of Shanghai, China. A stated preference survey is conducted to collect drivers' hypothetical choice between two alternative routes with designated unequal travel time and travel time variability. A binary choice model is developed to quantify trade-offs between travel time and travel time variability across various types of drivers. In the model, travel time and travel time variability are, respectively, measured by expectation and standard deviation of random travel time. The model shows that travel time and travel time variability on a route exert similarly negative effects on drivers' route choice behavior. In particular, it is found that middle-age drivers are more sensitive to travel time variability and less likely to choose a route with travel time uncertainty than younger and elder drivers. In addition, it is shown that taxi drivers are more sensitive to travel time and more inclined to choose a route with less travel time. Drivers with rich driving experience are less likely to choose a route with travel time uncertainty.  相似文献   

2.
This paper develops an efficient probabilistic model for estimating route travel time variability, incorporating factors of time‐of‐day, inclement weather, and traffic incidents. Estimating the route travel time distribution from historical link travel time data is challenging owing to the interactions among upstream and downstream links. Upon creating conditional probability function for each link travel time, we applied Monte Carlo simulation to estimate the total travel time from origin to destination. A numerical example of three alternative routes in the City of Buffalo shows several implications. The study found that weather conditions, except for snow, incur minor impact on off‐peak and weekend travel time, whereas peak travel times suffer great variations under different weather conditions. On top of that, inclement weather exacerbates route travel time reliability, even when mean travel time increases moderately. The computation time of the proposed model is linearly correlated to the number of links in a route. Therefore, this model can be used to obtain all the origin to destination travel time distributions in an urban region. Further, this study also validates the well‐known near‐linear relation between the standard deviation of travel time per unit distance and the corresponding mean value under different weather conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper studies a mean-standard deviation shortest path model, also called travel time budget (TTB) model. A route’s TTB is defined as this route’s mean travel time plus a travel time margin, which is the route travel time’s standard deviation multiplied with a factor. The TTB model violates the Bellman’s Principle of Optimality (BPO), making it difficult to solve it in any large stochastic and time-dependent network. Moreover, it is found that if path travel time distributions are skewed, the conventional TTB model cannot reflect travelers’ heterogeneous risk-taking behavior in route choice. This paper proposes to use the upper or lower semi-standard deviation to replace the standard deviation in the conventional TTB model (the new models are called derived TTB models), because these derived TTB models can well capture such heterogeneous risk-taking behavior when the path travel time distributions are skewed. More importantly, this paper shows that the optimal solutions of these two derived TTB models must be non-dominated paths under some specific stochastic dominance (SD) rules. These finding opens the door to solve these derived TTB models efficiently in large stochastic and time-dependent networks. Numerical examples are presented to illustrate these findings.  相似文献   

4.
Abstract

A route-based combined model of dynamic deterministic route and departure time choice and a solution method for many origin and destination pairs is proposed. The divided linear travel time model is used to calculate the link travel time and to describe the propagation of flow over time. For the calculation of route travel times, the predictive ideal route travel time concept is adopted. Solving the combined model of dynamic deterministic route and departure time choice is shown to be equivalent to solving simultaneously a system of non-linear equations. A Newton-type iterative scheme is proposed to solve this problem. The performance of the proposed solution method is demonstrated using a version of the Sioux Falls network. This shows that the proposed solution method produces good equilibrium solutions with reasonable computational cost.  相似文献   

5.
Perception bias in route choice   总被引:1,自引:0,他引:1  
Travel time is probably one of the most studied attributes in route choice. Recently, perception of travel time received more attention as several studies have shown its importance in explaining route choice behavior. In particular, travel time estimates by travelers appear to be biased against non-chosen options even if these are faster. In this paper, we study travel time perception and route choice of routes with different degrees of road hierarchy and directness. In the Dutch city of Enschede, respondents were asked to choose a route and provide their estimated travel times for both the preferred and alternative routes. These travel times were then compared with actual travel times. Results from previous studies were confirmed and expanded. The shortest time route was chosen in 41 % of the cases while the perceived shortest time route was chosen by almost 80 % of the respondents. Respondents overestimated travel time in general but overestimated the travel time of non-chosen routes more than the travel time of chosen routes. Perception of travel time depends on road hierarchy and route directness, as more direct routes and routes higher up in the hierarchy were perceived as being relatively fast. In addition, there is evidence that these attributes also influence route choice independently of perceived travel time. Finally, travel time perceptions appear to be most strongly biased against non-chosen options when respondents were familiar with the route or indicated a clear preference for the chosen routes. This result indicates that behavior will be more difficult to change for the regular travelers.  相似文献   

6.
Reliable route guidance can be obtained by solving the reliable a priori shortest path problem, which finds paths that maximize the probability of arriving on time. The goal of this paper is to demonstrate the benefits and applicability of such route guidance using a case study. An adaptive discretization scheme is first proposed to improve the efficiency in computing convolution, a time-consuming step used in the reliable routing algorithm to obtain path travel time distributions. Methods to construct link travel time distributions from real data in the case study are then discussed. Particularly, the travel time distributions on arterial streets are estimated from linear regression models calibrated from expressway data. Numerical experiments demonstrate that optimal paths are substantially affected by the reliability requirement in rush hours, and that reliable route guidance could generate up to 5-15% of travel time savings. The study also verifies that existing algorithms can solve large-scale problems within a reasonable amount of time.  相似文献   

7.
The effect of travel time variability (TTV) on route choice behavior is explored in this study. A stated preference survey is conducted to collect behavioral data on Shanghai drivers’ choice between a slow but stable route and a fast but unreliable route. Travel time and TTV are respectively measured by mean and standard deviation of random travel time. The generalized linear mixed model (GLMM) is applied to quantify trade-offs between travel time and TTV. The GLMM based route choice model effectively accounts for correlations among repeated observations from the same respondent, and captures heterogeneity in drivers’ values of TTV. Model estimation results show that, female drivers and drivers with rich driving experience are less likely to choose a route with high TTV; smaller expected travel time of a route increase the probability of its being chosen; all drivers have intrinsic preference for a route with smaller expected travel time, but the degree of preference may vary within the population; TTV on average has negative effects on route choice decision, but a small portion of drivers are risk-prone to choose a fast but unreliable route despite high TTV.  相似文献   

8.
The paper adopts the framework employed by the existing dynamic assignment models, which analyse specific network forms, and develops a methodology for analysing general networks. Traffic conditions within a link are assumed to be homogeneous, and the time varying O-D travel times and traffic flow patterns are calculated using elementary relationships from traffic flow theory and link volume conservation equations. Each individual is assumed to select a departure time and a route by trading off the travel time and schedule delay associated with each alternative. A route is considered as reasonable if it includes only links which do not take the traveller back to the origin. The set of reasonable routes is not consistant but depends on the time that an individual decides to depart from his origin. Equilibrium distributions are derived from a Markovian model which describes the evolution of travel patterns from day to day. Numerical simulation experiments are conducted to analyse the impact of different work start time flexibilities on the time dependent travel patterns. The similarity between link flows and travel times obtained from static and dynamic stochastic assignment is investigated. It is shown that in congested networks the application of static assignment results in travel times which are lower than the ones predicted by dynamic assignment.  相似文献   

9.
It is widely acknowledged that cyclists choose their route differently to drivers of private vehicles. The route choice decision of commuter drivers is often modelled with one objective, to reduce their generalised travel cost, which is a monetary value representing the combined travel time and vehicle operating cost. Commuter cyclists, on the other hand, usually have multiple incommensurable objectives when choosing their route: the travel time and the suitability of a route. By suitability we mean non-subjective factors that characterise the suitability of a route for cycling, including safety, traffic volumes, traffic speeds, presence of bicycle lanes, whether the terrain is flat or hilly, etc. While these incommensurable objectives are difficult to be combined into a single objective, it is also important to take into account that each individual cyclist may prioritise differently between travel time and suitability when they choose a route.This paper proposes a novel model to determine the route choice set of commuter cyclists by formulating a bi-objective routing problem. The two objectives considered are travel time and suitability of a route for cycling. Rather than determining a single route for a cyclist, we determine a choice set of optimal alternative routes (efficient routes) from which a cyclist may select one according to their personal preference depending on their perception of travel time versus other route choice criteria considered in the suitability index. This method is then implemented in a case study in Auckland, New Zealand.The study provides a starting point for the trip assignment of cyclists, and with further research, the bi-objective routing model developed can be applied to create a complete travel demand forecast model for cycle trips. We also suggest the application of the developed methodology as an algorithm in an interactive route finder to suggest efficient route choices at different levels of suitability to cyclists and potential cyclists.  相似文献   

10.
We consider a specific advanced traveler information systems (ATIS) whose objective is to reduce drivers’ travel time uncertainty with recurrent network congestion through provision of traffic information. Since the provided information is still partial or imperfect, drivers equipped with an ATIS cannot always find the shortest travel time route and thus may not always comply with the advice provided by ATIS. Thus, there are three classes of drivers on a specific day: drivers without ATIS, drivers with ATIS but without compliance with ATIS advice, drivers with ATIS and in compliance with ATIS advice. All three classes of drivers make route choice in a stochastic manner, but with different degree of uncertainty of travel time on the network. In this paper we investigate the interactions among the three classes of drivers in an ATIS environment using a multiple behavior stochastic user equilibrium model. By assuming that the market penetration of ATIS is an increasing function of the actual private gain (time saving minus the cost associated with system use) derived from ATIS service, and the ATIS compliance rate of equipped drivers is given as the probability of the actual travel time of complied drivers being less than that of non-complied drivers, we determine the equilibrium market penetration and compliance rate of ATIS and the resulting equilibrium network flow pattern using an iterative solution procedure.  相似文献   

11.
Dynamic user optimal simultaneous route and departure time choice (DUO-SRDTC) problems are usually formulated as variational inequality (VI) problems whose solution algorithms generally require continuous and monotone route travel cost functions to guarantee convergence. However, the monotonicity of the route travel cost functions cannot be ensured even if the route travel time functions are monotone. In contrast to traditional formulations, this paper formulates a DUO-SRDTC problem (that can have fixed or elastic demand) as a system of nonlinear equations. The system of nonlinear equations is a function of generalized origin-destination (OD) travel costs rather than route flows and includes a dynamic user optimal (DUO) route choice subproblem with perfectly elastic demand and a quadratic programming (QP) subproblem under certain assumptions. This study also proposes a solution method based on the backtracking inexact Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, the extragradient algorithm, and the Frank-Wolfe algorithm. The BFGS method, the extragradient algorithm, and the Frank-Wolfe algorithm are used to solve the system of nonlinear equations, the DUO route choice subproblem, and the QP subproblem, respectively. The proposed formulation and solution method can avoid the requirement of monotonicity of the route travel cost functions to obtain a convergent solution and provide a new approach with which to solve DUO-SRDTC problems. Finally, numeric examples are used to demonstrate the performance of the proposed solution method.  相似文献   

12.
Perceived mean-excess travel time is a new risk-averse route choice criterion recently proposed to simultaneously consider both stochastic perception error and travel time variability when making route choice decisions under uncertainty. The stochastic perception error is conditionally dependent on the actual travel time distribution, which is different from the deterministic perception error used in the traditional logit model. In this paper, we investigate the effects of stochastic perception error at three levels: (1) individual perceived travel time distribution and its connection to the classification by types of travelers and trip purposes, (2) route choice decisions (in terms of equilibrium flows and perceived mean-excess travel times), and (3) network performance measure (in terms of the total travel time distribution and its statistics). In all three levels, a curve fitting method is adopted to estimate the whole distribution of interest. Numerical examples are also provided to illustrate and visualize the above analyses. The graphical illustrations allow for intuitive interpretation of the effects of stochastic perception error at different levels. The analysis results could enhance the understanding of route choice behaviors under both (subjective) stochastic perception error and (objective) travel time uncertainty. Some suggestions are also provided for behavior data collection and behavioral modeling.  相似文献   

13.
A dynamic traffic assignment (DTA) model typically consists of a traffic performance model and a route choice model. The traffic performance model describes how traffic propagates (over time) along routes connecting origin-destination (OD) pairs, examples being the cell transmission model, the vertical queueing model and the travel time model. This is implemented in a dynamic network loading (DNL) algorithm, which uses the given route inflows to compute the link inflows (and hence link costs), which are then used to compute the route travel times (and hence route costs). A route swap process specifies the route inflows for tomorrow (at the next iteration) based on the route inflows today (at the current iteration). A dynamic user equilibrium (DUE), where each traveller on the network cannot reduce his or her cost of travel by switching to another route, can be sought by iterating between the DNL algorithm and the route swap process. The route swap process itself takes up very little computational time (although route set generation can be very computationally intensive for large networks). However, the choice of route swap process dramatically affects convergence and the speed of convergence. The paper details several route swap processes and considers whether they lead to a convergent system, assuming that the route cost vector is a monotone function of the route inflow vector.  相似文献   

14.
Although many individual route choice models have been proposed to incorporate travel time variability as a decision factor, they are typically still deterministic in the sense that the optimal strategy requires choosing one particular route that maximizes utility. In contrast, this study introduces an individual route choice model where choosing a portfolio of routes instead of a single route is the best strategy for a rational traveler who cares about both journey time and lateness when facing stochastic network conditions. The proposed model is compared with UE and SUE models and the difference in both behavioral foundation and model characteristics is highlighted. A numerical example is introduced to demonstrate how such model can be used in traffic assignment problem. The model is then tested with GPS data collected in metropolitan Minneapolis–St. Paul, Minnesota. Our data suggest there is no single dominant route (defined here as a route with the shortest travel time for a 15 day period) in 18% of cases when links travel times are correlated. This paper demonstrates that choosing a portfolio of routes could be the rational choice of a traveler who wants to optimize route decisions under variability.  相似文献   

15.
Estimates of road speeds have become commonplace and central to route planning, but few systems in production provide information about the reliability of the prediction. Probabilistic forecasts of travel time capture reliability and can be used for risk-averse routing, for reporting travel time reliability to a user, or as a component of fleet vehicle decision-support systems. Many of these uses (such as those for mapping services like Bing or Google Maps) require predictions for routes in the road network, at arbitrary times; the highest-volume source of data for this purpose is GPS data from mobile phones. We introduce a method (TRIP) to predict the probability distribution of travel time on an arbitrary route in a road network at an arbitrary time, using GPS data from mobile phones or other probe vehicles. TRIP captures weekly cycles in congestion levels, gives informed predictions for parts of the road network with little data, and is computationally efficient, even for very large road networks and datasets. We apply TRIP to predict travel time on the road network of the Seattle metropolitan region, based on large volumes of GPS data from Windows phones. TRIP provides improved interval predictions (forecast ranges for travel time) relative to Microsoft’s engine for travel time prediction as used in Bing Maps. It also provides deterministic predictions that are as accurate as Bing Maps predictions, despite using fewer explanatory variables, and differing from the observed travel times by only 10.1% on average over 35,190 test trips. To our knowledge TRIP is the first method to provide accurate predictions of travel time reliability for complete, large-scale road networks.  相似文献   

16.
This study investigates the energy consumption impact of route selection on battery electric vehicles (BEVs) using empirical second-by-second Global Positioning System (GPS) commute data and traffic micro-simulation data. Drivers typically choose routes that reduce travel time and therefore travel cost. However, BEVs’ limited driving range makes energy efficient route selection of particular concern to BEV drivers. In addition, BEVs’ regenerative braking systems allow for the recovery of energy while braking, which is affected by route choices. State-of-the-art BEV energy consumption models consider a simplified constant regenerative braking energy efficiency or average speed dependent regenerative braking factors. To overcome these limitations, this study adopted a microscopic BEV energy consumption model, which captures the effect of transient behavior on BEV energy consumption and recovery while braking in a congested network. The study found that BEVs and conventional internal combustion engine vehicles (ICEVs) had different fuel/energy-optimized traffic assignments, suggesting that different routings be recommended for electric vehicles. For the specific case study, simulation results indicate that a faster route could actually increase BEV energy consumption, and that significant energy savings were observed when BEVs utilized a longer travel time route because energy is regenerated. Finally, the study found that regenerated energy was greatly affected by facility types and congestion levels and also BEVs’ energy efficiency could be significantly influenced by regenerated energy.  相似文献   

17.
Advanced Traveler Information Systems (ATIS) provide travelers with real time traffic information to optimize their travel choices. The objective of this paper is to model drivers' diversion from their normal routes in the provision of ATIS. Five different scenarios of traffic information are used. Generalized Estimating Equations (GEE) framework with repeated observations and binomial probit link function is introduced and implemented. GEE with four different correlation structures including the independent case are developed and compared with each other and with regular Maximum Likelihood Estimation (MLE). A travel simulator was used. Sixty-five subjects have traveled 10 simulated trial days each on a 40-link realistic network with real historical congestion levels. The results showed that providing traffic information increases the probability of drivers' diversion from their normal routes. Adding advice to the pre-trip and/or en-route information encourages drivers to divert. Providing en-route in addition to the pre-trip information with or without advice increases the diversion probability. High travel time on the normal route and less travel time on the diverted route increase the probability of diversion. High-educated drivers are less likely to divert. Expressway users are more likely to divert from their normal routes under ATIS. Drivers' familiarity with the device that provides the information and high number of traffic signals on the normal route increase the diversion probability.  相似文献   

18.
Travellers can benefit from the availability of point‐to‐point driving time estimates on a real time basis for making travel decisions such as route choice at strategic locations (e.g. junctions of major routes). This paper reports a predictive travel time methodology that features a Bayesian approach to fusing and updating information for use in advanced traveller information system. The methodology addresses the issue that data captured in real time on travel conditions becomes obsolete and has archival value only unless it is used as an input to a predictive travel time method for updating the information. The need for fusing real time data with other factors that influence travel time is defined and the concept of predictive travel time is discussed. The methodological framework and its components are advanced and an example application is provided for illustrating the fusion of data captured by infrastructure‐based and mobile technology with model‐based predictions in order to produce expected travel times. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A study of travel time and reliability on arterial routes   总被引:1,自引:0,他引:1  
This study is concerned with travel time and operational reliability on arterial routes. Reliability is viewed in terms of the consistency of operation of the route under investigation and defined in terms of the inverse of the standard deviation of the travel time distribution.Under certain assumptions, travel time behavior on an arterial route is seen to closely follow a gamma distribution; the reliability measure can be derived accordingly. Utilizing arterial travel time data from the Chicago area, both a regression and a statistical model are show to serve as efficient techniques in predicting reliability. The prediction models are evaluated.  相似文献   

20.
This paper addresses departure time and route switching decisions made by commuters in response to Advanced Traveller Information Systems (ATIS). It is based on the data collected from an experiment using a dynamic interactive travel simulator for laboratory studies of user responses under real-time information. The experiment involves actual commuters who simultaneously interact with each other within a simulated traffic corridor that consists of alternative travel facilities with differing characteristics. These commuters can determine their departure time and route at the origin and their path en-route at various decision nodes along their trip. A multinomial probit model framework is used to capture the serial correlation arising from repeated decisions made by the same respondent. The resulting behavioural model estimates support the notion that commuters' route switching decisions are predicated on the expectation of an improvement in trip time that exceeds a certain threshold (indifference band), which varies systematically with the remaining trip time to the destination, subject to a minimum absolute improvement (about 1 min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号