首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究目的:目前国内高海拔地区(海拔>3 000 m)隧道内燃牵引运营通风设计中,有害气体容许浓度没有相应的规范可参照。通过国内外高、低海拔地区CO、NO2最高容许浓度的比较,国内外隧道运营通风与环境控制标准检索、分析,提出高海拔隧道内燃牵引运营通风控制标准建议值。研究结论:国内相关规范(标准)规定的有害气体最高容许浓度比国外发达国家的标准要求高。初步建议高海拔运营隧道内空气中内燃机车废气的容许浓度:NOx(以NO2计):工作日内平均容许浓度为10 mg/m3,工作日内任何一次30 min内接触废气的平均浓度不超过30 mg/m3。CO:工作日内平均容许浓度为30 mg/m3,工作日内任何一次30 min内接触废气的平均浓度不超过90 mg/m3。  相似文献   

2.
以在建的采用钻爆法施工的敦格铁路高海拔单洞单线特长隧道为例建立隧道三维模型。仅考虑出碴车排放的一氧化碳(CO),利用动网格及用户自定义函数,选取RNGκ-ε湍流模型,采用非定常隐式解法求解气流流动和CO扩散的方程,应用Fluent软件进行通风工况下出碴车运行过程中高海拔隧道内气流速度场和压力场、CO浓度场的三维非稳态模拟,分析出碴车排放CO扩散规律。结果表明:出碴车运行速度越大,越靠近车辆尾部,环隙流速度越大;出碴车车头前端气流速度和压力影响区域的长度约为5m,车尾影响区域较长;CO主要集中在车尾涡流区;出碴车加速运行区段CO浓度超过标准限值30mg·m~(-3),匀速运行区段CO浓度超标区域极小且未达到人体呼吸高度;出碴车运行过程中,CO浓度扩散规律符合瞬时点源一维扩散方程基本解,车速越大,距离车尾越近,CO扩散系数越大,远离尾部涡流区,CO扩散系数趋于稳定。为减小前后2辆出碴车排放CO浓度的叠加,建议出碴车行驶间隔时间大于5min。  相似文献   

3.
基于气流流动和传热冷却的工作原理,设计一种吸风口与排风口距离较长且射流排风风速较高的新型散热系统,建立包括燃烧热与输出功率、机体辐射与废气排放热量及冷却系统性能的散热模型;在内径5.2 m、长12 m的隧道内进行散热性能的计算与试验对比验证的基础上,仿真对比系统工作时该试验隧道与高海拔长隧道内的冷却气流流动情况。结果表明:新型散热系统散热性能的理论计算值与试验值基本一致;试验环境下,冷却气流的排风风速为12 m·s~(-1)、风量为14.5 m~3·s~(-1)和吸热前后温差为28 K时,新型散热系统能满足发动机输出480kW的散热需求;仿真条件下,在海拔4 300 m和长30.4 km的隧道内,冷却气流的排风风速为12 m·s~(-1)、风量为21.0 m~3·s~(-1)、吸热前后温差为40 K时,新型散热系统能满足发动机在隧道内低速移动作业输出550 kW的散热需求。  相似文献   

4.
目前对高海拔铁路隧道火灾的研究较少。本文应用火灾动态仿真模拟软件(Fire Dynamic Simulation,FDS)对海拔500,3000 m铁路隧道内的火灾烟气蔓延进行了数值模拟分析,对比了高海拔环境低温、低压、低氧等显著特征及纵向风速对隧道火灾的影响。结果表明,在本文的火灾计算条件下海拔3000 m时隧道内的最高温度比低海拔时低24.8%,CO浓度增大30%~50%;海拔3000 m时随着纵向风速增加,拱顶最高温度显著下降,最大降幅达62.5%,且最高温度点向下游偏离火源区边缘上方;火源上游温度减小且升温范围逐渐减小,纵向风对上游烟气的“稀释”“阻拦”作用强于下游。  相似文献   

5.
为评价横南铁路分水关隧道射流通风系统效果,研究不同通风方式隧道内有害气体浓度变化规律,探讨各型通风方案的可行性,应用真空管法和仪器法,测试隧道自然通风状况下,列车通过后NOx、CO15min时间加权平均浓度、日平均浓度,测试隧道射流风机正常通风、提前通风和反向通风3种方式通风效果。结果:隧道本底污染NOx最高达152mg/m^3,CO最高达50mg/m^3;15min加权平均浓度:NOx最高达122mg/m^3,CO最高达16.5mg/m^3;日平均浓度NOx达9.7mg/m^3,CO达5.0mg/m^3。风机正常通风13~15min可使有害气体达标,设计通风17min合理。提前通风10~12min达标,但隧道总体通风时间增加9min,最高浓度NOx可达200mg/m^3,CO可达110mg/m^3,一般情况不宜采用。  相似文献   

6.
为定量分析高海拔隧道出渣过程中自卸车CO排放对施工环境的影响,针对自卸车底部、侧部、尾部安装排气管三种CO排放方式,基于Fluent软件,采用RNGk-ε湍流模型,选取Species Transport模型模拟CO与空气的耦合作用,考虑高海拔低气压和空气密度的影响,运用动网格及用户自定义函数(UDF),模拟自卸车体行驶过程中隧道气流三维速度场、CO浓度场,基于现场实测数据验证模拟结果。结果表明:相同行驶工况下,隧道断面越大,CO沿途扩散越快,较高的CO浓度主要出现在车体高度以下区域;三种排气管中,侧部排气管最有利于沿途CO扩散。自卸车排气管轴向CO浓度的沿途扩散符合e指数衰减规律,根据一维扩散理论,提出CO浓度累积预测计算式。  相似文献   

7.
随着我国改革开放不断地深入,铁路建设飞速发展,建设高潮由沿海地区逐步转入内陆山区,铁路的长大隧道也将会越来越多。而目前编制单线铁路隧道长度在6km以上概预定额,尚无成熟的依据。为了适应该项工程的需要,我们根据有关资料和现行定额,进行了统计分析、对比、调整换算,编制了长度大于6km的单线铁路隧道预算定额,可作为编制单线铁路长大隧道概预算的参考之用。  相似文献   

8.
应用一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法,研究时速600 km等级高速磁浮列车交会时隧道内压力峰值的分布规律,分析隧道长度、隧道净空面积、列车运行速度和列车长度对列车交会时隧道内压力峰值的影响规律。结果表明:隧道中央测点的压力波动最剧烈,压力峰值以隧道中央位置为中心点往隧道2侧对称分布;列车运行速度为400~650 km·h~(-1)、列车编组为3~10辆时,基于隧道内压力峰值的最不利隧道长度在160~1 000 m范围;隧道内压力峰值均随隧道净空面积增加而减小,随列车运行速度的增大而急剧增大,列车长度对其基本无影响;拟合发现隧道内压力峰值与隧道净空面积约-1.1~-1.4次幂成正比,与列车运行速度约2.0~3.8次幂成正比;当采用现有350 km·h~(-1)等级高速铁路双线隧道净空面积标准,并且2列列车以600 km·h~(-1)交会时,隧道内压力峰值高达±30 kPa,必须增大隧道净空面积或增设竖井等减压设施以满足ERRI医学健康标准。  相似文献   

9.
为研究铁路隧道中主隧道与斜井风流在火灾模式下的相互影响,分别对不同主隧道风速、斜井风速以及火灾规模等组合情景下的铁路隧道火灾进行燃烧模型试验。研究结果表明:火灾规模越大,隧道拱顶处最高温度越高,与火灾规模15 MW相比,火灾规模20 MW的最高温度升高130℃;与主隧道内通风2.5 m/s相比,不通风时拱顶最高温度升高140℃,且后者主隧道内火灾烟气更易侵入斜井;斜井向主隧道送风风速越大,含斜井主隧道段内的拱顶温度越低;与不送风相比,斜井送风风速为3 m/s时火源拱顶最高温度约降低80℃,不含斜井主隧道段内拱顶温度变化不明显;斜井送风风速越大,烟气进入斜井内的长度越短,与不送风相比,斜井内送风风速为1 m/s时斜井内烟气长度减少74 m;保证主隧道火灾烟气不侵入斜井的临界风速为2 m/s。  相似文献   

10.
研究目的:为了探讨城市双洞隧道污染物扩散情况,分析车辆出口隧道对车辆进口隧道污染物扩散的影响,采用CFD技术和气体扩散方程,对某城市双洞口隧道CO扩散进行模拟分析,讨论隧道洞口间隔墙设置的必要性。研究结论:模拟结果表明洞口间不设置隔墙时,出口隧道设计阀值200 ppm的排放条件下,入口隧道局部CO浓度可以达到60 ppm,而设置隔墙的情况下,入口隧道最大CO浓度在20 ppm,可见有必要设置隔墙,以对入口隧道设计环境进行改善。  相似文献   

11.
一、概况第一北老岭隧道位于鸭园至大栗子间,全长2419.3m,为人字坡单线隧道,石碴道床,断面呈马蹄形,断面积25m~2左右,坡度2.8~22.1‰,进出口高差12.4m,两端洞口与坡顶高差分别为36.6m和24.2m。除下行方向出口端有67m长(曲线半径300m)的曲线外,大部分为直线;距下行方向出口(低洞口)70m打一斜井,设有50A_4-11NO22型轴流风机为洞口风道吹入式通风。由于坡度大用2台2100马力东方红Ⅰ型内燃机车牵引,日通过列车22列。隧道内列车载重550t,上行车速22km/h下行车速29km/h洞内平均气温16.7~18.5℃,气  相似文献   

12.
在毛主席革命路线指引下,我国铁路运输事业正在迅速向前发展。随着牵引动力的不断改进,内燃机车的应用日益广泛。但是内燃机车在长大隧道内运行时,柴油在高温高压下产生的多种有害气体,可对在隧道内和机车驾驶室内作业的铁路工人的健康造成危害。因此给铁路劳动卫生提出了新的课题,遵照毛主席“一切为了人民健康”的教导,我们在有关单位的大力协助下,对东风Ⅰ型内燃机车在长大隧道内运行时,机车驾驶室和隧道内有害气体污染状况进行了调查。本文主要报道机车驾驶室的污染状况,并就其与列车运行情况,隧道内有害气体浓度等因素的关系提出讨论。  相似文献   

13.
为研究高速列车通过高海拔、大坡度和特长隧道下压力波的特性,基于一维可压缩非定常不等熵流动模型的广义黎曼变量特征线法模拟列车通过隧道时的车外压力,采用时间常数法计算车内压力;分别利用国外数值模拟结果和国内西成高铁实车试验数据,验证方法的合理性和准确性;以速度200 km·h-1的单列8编组高速列车为研究对象,分析列车通过4种海拔、5种坡度和4种长度组成的不同隧道时,车内外压力波动和最值的变化规律。结果表明:隧道内初始压力是影响车内外压力幅值的根本原因;车内外最大正、负压均随隧道海拔的升高而线性减小,随隧道坡度和长度的增加而线性增大;与下坡相比,列车上坡运行时车内的压力舒适性更为恶劣、气密性要求更高;列车上、下坡通过坡度30‰、进口端海拔4 500 m、长42 km隧道时,车外最大正、负压分别为9.85和-9.63 kPa,列车动态气密时间常数不应小于1 713 s。  相似文献   

14.
摘《铁路隧道运营通风设计规范》(TBl0068—2000)中规定“内燃机车通过隧道后15min内,氮氧化物(换算成NO2)浓度小于10mg/m^3”。此规定对于平原地区是适用的。然而青藏铁路建于高海拔地区,低气压、低氧、低温等严酷的自然条件对人体健康和劳动能力带来更为恶劣的影响。为了保障青藏铁路相关人群的健康生存和正常工作,本文结合青藏地区的特殊高原气候对人体造成影响的因素和气态污染物的衡量方式对青藏铁路运营隧道内宜采用的N02控制浓度进行了探讨。  相似文献   

15.
本文给出了单线铁路道射流通风的设计计算方法,牙已隧道的通风计算结果和试验结果,并将通风风速的计算值和测定值进行了比较,再者符合较好,研究结果表明,射流通风适用于长度4km内的单线路隧道通风,具有土建造价低,通风效果好,能耗低和安全可靠等优点。  相似文献   

16.
研究目的:针对京沪高速铁路隧道,采用一维、非定常、可压缩流动模型和特征线法,通过数值计算方法,对于净空面积为100 m2的隧道,选取不同的隧道长度、列车长度、列车速度等参数对单、双线隧道瞬变压力的影响进行了敏感性分析,从而探讨隧道净空面积为100 m2时的适应性。研究结论:结合国内压力波容许标准和UIC标准进行的比较分析结果,给出了京沪高速铁路隧道内列车高速运行的密封时间要求,并建议隧道内会车时,列车速度应低于350 km/h。  相似文献   

17.
为分析上海地铁1号线某枢纽车站隧道火灾防排烟能力,分别对该站自然通风、开/关站台轨旁侧排烟风机(UPE)等机械排烟条件下,10 MW列车火灾时的车站烟气温度场、烟雾分布及浓度进行了数值模拟与分析研究。研究表明,火灾列车进入车站时必须及时开启车站排烟风机(SEF)、隧道事故风机(TVF)和轨旁侧排烟风机(UPE),方能使站台隧道内风速接近临界速度,基本消除站台隧道内烟气逆向扩散,同时烟雾限制在隧道局部且浓度较低,有利乘客疏散。目前该排烟机制下站台层部分楼梯口烟气温度仍偏高,风速未达到地铁设计规范要求,存在安全隐患,应当引起运营部门的重视。  相似文献   

18.
圆梁山隧道是渝怀线上最长的隧道,隧道全长11.068 km.隧道下导坑施工到DK354 879(3#溶洞),突发爆喷型突泥,瞬间涌泥4 200 m3,塞满下导坑244 m空间.对3#溶洞爆喷型突泥进行了成因分析,以期对今后遇到类似地质条件下的施工提供借鉴价值.  相似文献   

19.
为分析高铁隧道及地下车站活塞风效应,采用经三维CFD数值模拟验证后的一维数值模拟计算方法,建立京张高铁八达岭隧道及半高安全门地下车站通风网络模型,计算不同工况下进出站人行通道风速,并评估通道内人员安全性。结果表明:一维数值模拟方法能准确预测咽喉区气流分布及通道风速;列车正常运营产生的活塞风直接影响站内气流,进出站人行通道内风速最高可达8.3 m/s;风速最大负值出现在两个区间分别有列车往隧道外以最大速度行驶时,风速最大正值出现在两个区间分别有列车以最大速度进站并在车站附近会车时;单车越行和两车会车时,通道内最高风速分别可达4.6 m/s和7.6 m/s;通过人员安全性分析,得到本模拟计算的通道内最大风速8.3 m/s在安全范围内,只是部分人员感觉不舒适。研究结果可用于高铁地下站通风系统的安全和舒适设计。  相似文献   

20.
赤峰机务段年架修内燃机车50~60台,轮修机车500台.该段配属DF型内燃机车80台,主要承担赤峰—通化(355 km)赤峰—隆化(212 km)的客、货车牵引和叶伯寿—赤峰(147km)的1对客车的牵引任务.赤峰机务段全段年排放污废水量为14.8×10~4m~3其中生产废水11×10~4m~3,生活污水3.8×10~4m~3.污废水采用合流制排出段外后入市政下水道.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号