首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
随着我国高速铁路大规模的投入使用,对运营线路的基础设施检测提出更高的要求,其中接触网几何参数的静态值及平顺度关系到高速列车能否安全顺利运行。介绍基于机器视觉技术的手推接触网几何参数检测小车的研究及应用,分别从硬件、软件方面详细阐述系统的工作原理及流程,具有较高的实用性。  相似文献   

2.
针对现行接触网定位器倾斜度检测方法效率低下、精确度不高的现状,研究基于计算机视觉的接触网定位器倾斜度自动测量方法.应用图像分割、剔除干扰线、图像细化等算法,对采集到的接触网定位装置的图像进行处理;然后用改进的Hough变换检测细化后的图像,对图像中相邻的特征象素点进行聚类并做感知编组;最后用随机Hough变换(RHT)...  相似文献   

3.
基于图像处理的接触网动态几何参数测量研究   总被引:1,自引:0,他引:1  
为了保证高速列车安全运行,需要对接触网的高度以及拉出值等几何参数进行经常性的检测。接触式检测在高速铁路试验中会增大试验数据与实际运行数据之间的差异,从而导致接触网测试参数误差变大。现利用车顶摄像机测量接触网几何参数进行可行性分析,提出了一种利用图像处理技术,对摄像机影像进行处理,提取并计算接触网动态高度以及拉出值等参数的方法。试验结果表明系统具有设备安装简单,测量精度高等特点,具有充分的可行性。  相似文献   

4.
为检验检测高速弓网综合检测装置、车载接触网运行状态检测装置和接触网悬挂状态检测监测装置的测量性能,设计接触网受电弓几何参数模拟系统。该系统主要由几何参数数值模拟装置和红外模拟系统组成,通过调整模拟碳滑板的高度及模拟接触线的相互位置,模拟实际受电弓和接触线的运行情况。实践表明,该系统使用方便、准确度高、便于运输及存放、易于扩展。  相似文献   

5.
针对高速铁路动车组,开发了基于激光扫描雷达的接触网动态几何参数监测系统。运用最小二乘数据拟合方法提高检测结果精度。针对接触网的薄弱环节,如线岔、锚段关节、分相等部位,采用基于Kalman滤波跟踪方法,实现不同接触线的识别。该监测系统能够准确检测接触网动态几何参数,有效保证行车安全。  相似文献   

6.
为将全球卫星导航系统(Global Navigation Satellite Systems,GNSS)定位技术应用于轨道几何参数测量,提高高速铁路绝对坐标的测量精度,在高速铁路沿线布设GNSS定位接收机作为定位基准站,并将各个接收机经过长时间观测的数据进行统一的联合解算处理,得到各定位基准站坐标。利用加装了GNSS定位接收机的轨道检查仪分别测量轨道特定点的大地坐标和内部几何参数,并将特定点的大地坐标测量结果与各定位基准站坐标数据进行联合解算处理,得到特定点的大地坐标最终测量结果。最后,将特定点的大地坐标最终测量结果与轨道内部几何参数测量结果进行数据融合,得到相应区段各点轨道内外部几何参数的测量结果。不确定度评定及验证试验表明,加装了GNSS定位接收机的轨检仪显著提高了轨道几何参数测量的精度,并极大提高了轨道测量的效率。  相似文献   

7.
针对国内电气化铁路接触网检测和检修的需要,基于图像处理技术提出了通过相机识别激光光斑,运用相机图像像素位置与接触网被测位置的角度关系测量接触网几何参数的方法,实现了同时对接触网2支接触线几何参数的非接触、连续测量。  相似文献   

8.
从接触网几何参数检测系统原理出发分析测量误差的影响因素,结合实际检测数据误差分布情况,指出测量误差服从正态分布并进行了正态性检验.在正态分布条件下构造了仅包含总体标准差一个未知量且服从卡方分布的统计变量,通过该统计变量对总体标准差的分布范围进行假设检验.推导样本数量与2类错误发生概率的关系,给出重复性评价所需样本数量的...  相似文献   

9.
介绍接触式检测方式、非接触式激光雷达扫描法和非接触式图像测量法3种地铁接触网几何参数检测方式的基本原理和特点。认为随着技术的发展,图像测量法将被越来越广泛采用。  相似文献   

10.
利用机器视觉三角测量原理,建立基于弓网视频的接触网几何参数测量参考坐标系,并进行测量标定。通过合理提取模板类型,利用时序图像滤波方法,实现连续视频图像快速匹配与参数测量。以海南东环铁路公司综合检测列车200 km/h的弓网视频检测数据为例,对比接触式检测系统测量数据和现场实测数据,分析测量结果准确性,用3次测量结果分析重复性。分析结果表明,基于模板匹配方法测量接触网几何参数方案可行,在200 km/h运行速度下,测量误差可控制在±20 mm。  相似文献   

11.
为实现地铁接触网的几何参数测量,研发了一种基于线激光的几何参数测量系统。该系统通过传感器采集嵌入接触线的Π型汇流排二维轮廓图像,通过合理选取轮廓特征直接测量接触线磨损量和汇流排倾角,结合对比法和随动策略间接测量接触网的导高和拉出值。研究结果表明:相比于测量精度为1 mm的检测仪,所提测量系统测得的接触网导高和拉出值与其最大差值分别为2 mm和3 mm;所提测量系统的行进速度为3.5 km/h,满足地铁刚性接触网几何参数的静态测量需求。  相似文献   

12.
提出一种基于单目摄像机标定原理的非接触式接触网几何参数修正检测方法。通过分析检测车振动对检测系统的影响,推导几何参数补偿公式,建立接触线几何模型的卡尔曼滤波方程,达到修正接触线几何参数检测值的目的。最后,以某检测车的实际运行数据验证了该方法有效性和准确性。  相似文献   

13.
张翼 《中国铁路》2020,(10):110-114
接触网视频与几何参数检测系统是接触网检测监测系统(6C系统)中的重要组成部分。通过视频系统拍摄的图片,可以很好地观测到接触网几何参数检测系统运行时的外部设备工作环境,两系统的同步检测对于检测数据的超限判断及综合分析具有重要意义。基于现场可编程门列阵(FPGA)嵌入式技术,自主研制接触网视频采集板,优化现有系统架构,确定检测数据间的同步方式、时序关系及关联标记,并通过实验室测试验证该设备的可行性,对提高接触网供电设备检测工作效率具有现实意义。  相似文献   

14.
介绍针对DJ J-8激光接触网检测仪的接触网几何参数测量仪检定台架的结构以及测量模拟接触线高度、拉出值、支柱侧面限界、轨距和水平(超高)等关键参数的测量方法.并依据JJF 1059-1999《测量不确定度评定与表示》开展检定台架接触线高度、拉出值、支柱侧面限界、轨距和水平等关键测量项目的测量不确定度评定,结果表明,该检定台架满足Ⅰ级精度的接触网几何参数测量仪的检定要求.  相似文献   

15.
根据我国铁路相关标准文件,从术语定义、设计、施工、运营等方面对我国电气化铁路接触网几何参数的技术要求进行梳理,对运营的主要电力机车、动车组的受电弓工作范围、滑板工作范围等参数进行总结分析,探讨受电弓与接触网几何参数在空间位置的匹配关系,分析接触网几何参数检测方法及检测评判标准,并结合商合杭高铁在接触网几何参数静态值检测和动态值检测方面的实例,说明现有检测标准的准确性及实用性。  相似文献   

16.
盛庆广 《铁道技术监督》2010,38(7):39-41,48
准确的接触网电气参数对电气化铁道的工程设计和系统运行特性的仿真分析具有重要意义。接触网本质上是个多导体输电线系统,为此,采用电力系统中的成熟计算方法,结合接触网的拓扑结构和导线的特殊性,阐述接触网串联阻抗和并联导纳矩阵的计算方法,给出相关导线的合并、消去方法。  相似文献   

17.
随着高速铁路6C检测监测系统技术规范的提出,基于视觉技术的非接触式接触网检测方法越来越受到业内研究人员的重视。为提高接触线上激光斑点跟踪定位的实时性以及测量值的准确性,提出了一种基于均值漂移和粒子滤波算法的接触网几何参数检测的新方法。首先,基于灰度颜色直方图特征分布和接触网"之"字形架构建立光斑目标模型;其次,利用聚类方法对粒子进行聚类,以聚类中心为起点运用均值漂移算法进行迭代计算,对迭代计算的结果利用粒子滤波算法得到光斑目标的图像坐标;然后,将激光斑点在图像坐标系下的坐标进行空间变换,得出接触线的几何参数导高和拉出值在世界坐标系下的测量值。最后,结合检测车在某供电段测试区的实际运行数据,验证了该方法的实时性和准确性。  相似文献   

18.
19.
基于车载方式进行接触网几何参数高精度测量必须进行车辆振动补偿。采用结构光立体视觉技术,研究基于2个激光二维传感器的车辆振动补偿方法。运用激光二维传感器扫描钢轨获得钢轨内侧轮廓的二维位移数据,经过空间坐标变换、数据预处理、钢轨特征提取和补偿参数计算4个环节,实现车辆相对钢轨平面的空间姿态参数的光学非接触式测量。基于车辆振动补偿方法的接触网几何参数检测装置经中国铁道科学研究院集团有限公司环行铁道试验基地和既有运营线路进行现场测试,结果表明:车体振动补偿准确有效,检测装置可准确测量拉出值和导高等接触网几何参数,测量数据重复性良好,在运营线路接触网周期性动态巡检中有效检出了拉出值等接触网几何参数超限。  相似文献   

20.
轮对几何参数及缺陷激光自动测量方法   总被引:5,自引:1,他引:4  
提出一种新的轮对几何参数及缺陷测量原理,在测量机构上部安装5套平行四边形机构和多个激光位移传感器,采用通过式测量方式,在轮对行走时实现对轮对踏面任意点直径、轮缘厚度、踏面磨耗及擦伤、轮辋厚等几何参数的自动测量,改变现有需要测量平台和轮对支撑与旋转机构的测量技术。介绍测量系统误差自动修正方法,提供了测量系统在现场安装试验结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号