首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
弹性轮对车辆-轨道垂向耦合系统动力学研究   总被引:1,自引:0,他引:1  
建立了弹性轮对车辆-轨道垂向耦合系统动力学模型,推导了弹性轮对车辆-轨道垂向耦合系统振动微分方程。通过输入脉冲型激扰,对弹性轮对车辆-轨道垂向耦合系统进行了轮轨力及轮轨接触应力的动力学仿真,并与刚性轮对车辆的计算结果进行了比较和分析。  相似文献   

2.
基于车辆-轨道耦合动力学原理,运用随机振动理论进行了轮轨系统中传统车辆模型与车辆-轨道耦合模型的垂向随机振动响应比较分析。结果表明,传统车辆模型仅适用于轮轨系统的低频振动分析,在研究高频振动时将产生大的误差;而车辆-轨道耦合模型则可适用于轮轨系统整个频率带的随机振动分析。  相似文献   

3.
为探明曲线半径对车辆、轨道及轮轨接触的影响,以轮轨非线性接触为研究对象,建立车辆-轨道耦合的整体有限元模型,采用扩展拉格朗日接触算法,在钢轨高低不平顺的激励下,以80 km/h的车速模拟不同曲线半径对车辆-轨道耦合系统的垂向振动影响。研究结果表明:小曲线半径对车体舒适和构架振动不利;曲线半径几乎不影响轨道的垂向振动,但在曲线轨道设计时应考虑内外轨横向加固措施。从轮轨非线性接触的角度探讨了轮轨脱离甚至爬轨的原因。  相似文献   

4.
采用车辆-轨道耦合大系统的思想,将钢轨简化为弹性点支承有限长的欧拉梁、轮轨接触关系采用弹簧接触,建立出轮轨动力学模型.分析车轮以不同速度行驶过程中,受轨道低接头不平顺激励下轮轨相互作用垂向振动响应.并得出低接头不平顺对列车提速的影响.  相似文献   

5.
建立了基于Timoshenko梁模型的非对称车辆/轨道耦合动力学模型,分析轨下支承失效对车辆乘坐舒适度的影响。钢轨被视为弹性离散点支承上的无限长Timoshenko梁,通过假设轨道系统垂向支承刚度沿纵向分布发生突变来模拟轨下支承失效状态。推导了考虑钢轨横向、垂向和扭转运动的轮轨滚动接触蠕滑率计算公式。利用Hertz法向接触理论和沈氏蠕滑理论分别计算轮轨法向力及轮轨滚动接触蠕滑力。采用移动轨下支承模型分析离散的轨枕支承对系统动力响应的影响。利用新型显式积分法求解车辆/轨道耦合动力学系统运动方程。乘坐舒适度评价采用Sperling指标,通过数值分析,得到直线轨道连续从0到6个轨下支承失效对车辆动态响应及乘坐舒适度的影响。结果表明,轨下支承失效对车辆系统位移、加速度有显著的影响,随着轨下支承失效个数的增加,轮轨力和车辆系统的位移、加速度将会急剧增大,乘坐质量和乘坐舒适度指标呈线性增大,但数值很小。  相似文献   

6.
线路随机不平顺对车辆—轨道耦合系统动力响应分析   总被引:11,自引:1,他引:10  
利用有限元法,建立了车辆-轨道耦合系统动力计算模型。在这个模型中,系统被分解为上部结构和下部结构两部上。上部结构为附有二系弹簧系统的整车模型,考虑车体和转向架的沉浮振动和点头振动。下部结构为轨道,钢轨被离散为双层弹性基础上有限长度的梁。对两系统分别用迭代法单独求解。轮轨间的耦合通过轮轨间的相互作用力来实现。同时,将轨道高低不平顺视为平衡各态历经随机过程。运用该模型,对不同线路等级和不同列车速度条件下车辆-轨道系统的垂南随机振动了计算,在时域和频域内对系统响应进行了分析。  相似文献   

7.
针对HXD2型6轴电力机车的动力学性能,建立了较为详细的6轴机车在弹性结构轨道上运行时的空间耦合动力学模型.对于机车子模型,假设车体、转向架和轮对均为刚体,各部分通过两系悬挂连接起来,形成一个多自由度质量-弹簧-阻尼系统,每个刚体均具有5个自由度,整个机车模型共有45个自由度.对于轨道模型,左右两股钢轨均视为连续弹性离散点支承基础上的无限长Euler梁,并考虑钢轨的垂向、横向及扭转振动;轨枕视为刚性体,并考虑轨枕的垂向、横向及转动;道床离散为刚性质量块,只考虑道床垂向振动.而对于轮轨关系模型,采用了先进的空间耦合关系模型.  相似文献   

8.
针对HXD2型6轴电力机车的动力学性能,建立了较为详细的6轴机车在弹性结构轨道上运行时的空间耦合动力学模型。对于机车子模型,假设车体、转向架和轮对均为刚体,各部分通过两系悬挂连接起来,形成一个多自由度质量-弹簧-阻尼系统,每个刚体均具有5个自由度,整个机车模型共有45个自由度。对于轨道模型,左右两股钢轨均视为连续弹性离散点支承基础上的无限长Euler梁,并考虑钢轨的垂向、横向及扭转振动;轨枕视为刚性体,并考虑轨枕的垂向、横向及转动;道床离散为刚性质量块,只考虑道床垂向振动。而对于轮轨关系模型,采用了先进的空间耦合关系模型。  相似文献   

9.
建立了N1004型救援起重机-轨道系统垂向振动耦合动力学模型,分析了该机正常救援作业轮轨作用力。模型将起重机简化为自由度等于20的多刚体系统,应用振型分解法把钢轨简化为Euler-Bernoulli梁,轨枕和道床也当量离散化为多体系统,通过Hertz非线性接触理论将救援起重机和轨道系统联系在一起。计算结果表明,该特种车辆的轮轨接触力大于一般铁路车辆的试验值。  相似文献   

10.
针对高速铁路钢轨扣件,结合其动态力学性能试验,基于高阶分数阶导数理论建立扣件动参数频变FVMP模型,并将该模型应用于车辆-轨道随机振动模型中,采用格林函数法及虚拟激励法分析扣件动参数频变对车辆及钢轨结构振动的影响。计算结果表明:扣件的动参数对频率和温度具有明显的依赖性,而高阶分数阶导数FVMP模型能准确表征这种力学行为;扣件动参数的频变特性对车体的垂向振动无较大影响,但对频率在20~70 Hz范围内的转向架随机振动有一定影响;考虑扣件动参数频变特性后轮对与钢轨振动所受影响较大,轮对加速度功率谱密度在中频段的峰值相差64.2%,钢轨加速度功率谱密度在中频段的峰值相差55.2%;扣件FVMP模型得到的轮轨随机振动频域分布向高频偏移,且中高频段内轮轨振动响应减小;忽视扣件动参数随频率变化的特性将难以准确表征轮轨中高频段内的振动响应。  相似文献   

11.
基于虚拟激励法进行列车~桥梁耦合系统的非平稳随机振动分析,研究了车速以及轨道不平顺等级对系统随机振动的影响。车辆模型采用10个自由度的两系悬挂垂向车辆模型,考虑轮轨接触点处随机激励的时滞性,将轨道高低不平顺激励假设为均匀调制多点完全相干随机激励;然后根据时变系统的虚拟激励法,将其转化为一系列确定的虚拟激励,采用Newmark逐步积分法分离迭代求解系统的虚拟响应,进而求得系统随机响应的时变功率谱和标准差,据此分析系统的随机振动特性;最后通过数值算例分析了列车速度、轨道不平顺等级对系统随机响应的影响。  相似文献   

12.
钢弹簧浮置板轨道支点力动力特性分析   总被引:2,自引:1,他引:1  
建立了车辆一浮置板轨道垂向耦合动力学模型,其中钢轨为弹性离散支承有限长Euler梁,浮置板为弹性离散支承有限长自由梁.以美国五级谱作为随机不平顺激扰,计算分析了钢弹簧支点力动力特性.结果表明,支点力峰值随车速的提高而增大,其频率成分主要由车速、车辆结构特性以及浮置板一阶固有频率引起,即频率值在车速和车长的比值与比值的整数倍以及浮置板固有频率附近.  相似文献   

13.
高速列车车轮不圆顺磨耗仿真及分析   总被引:2,自引:0,他引:2  
为了研究高速列车车轮不圆顺磨耗的发展规律及其对动力学性能的影响,建立车辆-轨道系统动力学和车轮圆周磨耗预测相结合的耦合模型。模型中考虑了车辆系统的一、二系非线性悬挂力、轮轨非线性接触几何关系和非线性蠕滑力,并考虑了轮对的一阶弹性弯曲和扭转振动。轨道模型包括基于Euler梁的弹性钢轨和刚性轨枕。假设车轮型面不发生变化,只有车轮圆周方向不圆度发生变化,并假设车轮不圆顺的发展由磨耗引起。采用Herzt接触弹簧计算轮轨法向力,采用迹线法实时计算轮轨接触几何关系。通过数值仿真研究车轮不圆顺对车辆动力学性能的影响和不圆度的扩展规律。计算结果表明,车轮不圆顺会引起较大的轮轨垂向力,并与车轮不圆顺的谐波阶数、波深和车速有密切关系。由于车轮不圆顺引起的振动频率一般较高,车体平稳性指标对其不一定很敏感,但会增大车体振动响应,影响乘坐舒适性。在车轮初始不圆顺的情况下,随着运行距离的增加,车轮会因磨耗而加剧其不圆顺。轨道激扰不会掩盖车轮不圆度的扩展规律。  相似文献   

14.
基于2.5维有限元法和虚拟激励法进行地铁交通场地随机振动特征分析。基于虚拟激励法由轨道不平顺功率谱得到动态轮轨力功率谱,将其作为轨道—隧道—地基土系统2.5维有限元模型的外部激励,计算得到地面随机振动响应,分析车速和轨道不平顺等级对地面随机振动特征的影响。结果表明:地面振动位移受车辆轴重控制,受轨道不平顺随机激励影响较小;地面振动速度和加速度主频随地铁车速的增加显著增大,轨道不平顺等级不改变地面振动响应的频谱分布;轨道不平顺等级降低和地铁车速增大造成地面随机振动响应的离散度和Z振级最大值显著增加;轨道不平顺随机激励下,地面振动速度和加速度上限值以及Z振级最大值在垂直于地铁运行方向的衰减出现明显波动,距轨道中心线60 m外衰减趋势变缓。  相似文献   

15.
为研究轨道不平顺引起的列车-"站桥合一"客站耦合系统随机振动特征,提出基于虚拟激励法和有限元方法的车辆-轨道-客站耦合系统竖向随机振动模型。其中,车辆采用具有二系悬挂的质量-弹簧-阻尼系统模拟,轨道-客站采用有限元方法模拟,轮轨关系采用可以考虑轮轨相对变形的线性Hertz接触模型。采用虚拟激励法将轨道不平顺精确地转化为一系列竖向简谐不平顺的叠加,将非平稳随机振动问题转化为确定性的时间历程问题,推导车辆-轨道-客站耦合时变系统随机振动计算模型。以天津西站为例,对列车高速通行引起的客站各楼层随机振动特性进行分析,并讨论车致振动随车速的变化规律。研究结果表明:客站竖向位移主要受车辆轴重引起的确定性激励控制,轨道不平顺引起的随机激励对其影响很小,而竖向加速度则受两种激励的双重影响;车致随机振动在客站结构内衰减迅速,同一楼层平面内,确定性响应和随机性响应衰减速率相近,沿楼层高度方向,随机性响应衰减速率稍大于确定性响应;车速变化对客站位移影响较小,但对加速度影响显著,其中加速度均方根随车速增大而显著增加。  相似文献   

16.
以Vossloh300型扣件胶垫为研究对象,利用配备温度箱的万能试验机得到其在20?℃下的静刚度值。基于Timoshenko梁理论建立车辆-轨道垂向耦合系统随机振动分析模型,探究该型扣件胶垫频变刚度在不同频段内对轮轨系统随机振动频域特征的影响规律。实验结果为:Vossloh300型扣件胶垫静刚度在3~5?Hz激振条件下的测试值为22.4?k N/mm。仿真分析表明:Vossloh300型扣件胶垫刚度频变特性对CRH380型高速动车组轮轨系统高频振动影响较小,但对其1/3倍频中心频率为40~100?Hz影响较大,扣件力最大增幅达30.98%,并且使轨道结构振动增加2?dB。因此,在进行轮轨系统振动分析时,应考虑扣件胶垫刚度的频变特性。  相似文献   

17.
为研究轨道交通车辆经过高架桥时的动态特性,以弹性支承块式无砟轨道为例,基于车辆-轨道耦合动力学理论,建立了车辆-轨道-桥梁耦合系统的竖向振动矩阵方程,利用MATLAB软件编写了计算程序。数值算例验证了计算程序的可靠性。通过改变系统参数,探索了轨道不平顺、车辆速度和轨道结构竖向刚度对系统竖向振动响应的影响。结果表明:轨道振动频率分布在0~500 Hz范围内,以20 Hz以内的低频振动为主;桥梁振动频率分布在0~200Hz范围内,以一阶竖向弯曲振动为主;轨道不平顺所产生的轮轨高频冲击力可达轴重的3倍,是车辆-轨道-桥梁耦合系统重要激励源之一;轮轨力和轨道加速度响应对车速的变化敏感,车辆-轨道-桥梁耦合系统位移响应对车速的变化不敏感;扣件和支承块胶垫竖向刚度应根据设计要求在40~80 k N/mm之间进行合理匹配取值。  相似文献   

18.
橡胶浮置板轨道垂向动力特性分析   总被引:6,自引:0,他引:6  
根据浮置板轨道系统的结构特点及隔振原理,结合轮轨系统耦合动力学理论,建立了车辆—橡胶减振垫型浮置板轨道系统垂向耦合振动模型,以美国五级谱随机不平顺作为轮轨激励,计算了车辆和轨道系统的动力响应,并分析了减振垫面刚度对轨道结构动力特性及垂向力的传递特性的影响。计算表明,减振垫的面刚度对车辆系统的动力响应影响不大,但对轨道系统影响较大;随着面刚度的减小,传递到基础上的垂向力明显减低,而钢轨和浮置板的垂向变形会有所增大;在保证轨道系统稳定性的前提下,存在合理的较低的减振垫面刚度,使得减振效果最佳。  相似文献   

19.
无砟轨道垂向高频振动响应分析   总被引:1,自引:0,他引:1  
为了分析不平顺条件下无砟轨道的高频振动特性及声辐射特性,建立了高速铁路无砟轨道车辆-轨道垂向耦合动力学模型,在轮轨表面粗糙度激励下考虑接触滤波,模拟出了轮轨垂向高频振动相互作用力,并将此力作用在按我国实际轨道结构建立的三维实体有限元模型上,仿真模拟轨道系统在随机荷载作用下的高频振动特性,得到了钢轨轨头、轨腰、轨底3处的...  相似文献   

20.
基于车辆-轨道耦合动力学理论,采用频率分析方法计算轨道高低不平顺与车辆-轨道垂向耦合系统之间的传递函数。根据车辆-轨道耦合系统的振动传递特性得出轨道高低不平顺的敏感波长,并分析其分布特征,进一步探讨行车速度、车辆悬挂参数、轨道参数对敏感波长的影响。结果表明:基于车辆-轨道耦合系统的振动传递特性,可得出轨道不平顺的敏感波长;车体、转向架振动加速度的敏感波长不随车速的增大而递增,而由车速的增大速率与敏感频率移动速率的比值决定的;轮对加速度、轮轨力和轨道结构振动加速度的敏感波长随车速的增大近似呈线性增大;适当增大车辆系统的悬挂刚度和阻尼有利于减小高低不平顺的最大敏感波长范围;轨道刚度和阻尼对车体、转向架振动加速度的敏感波长几乎无影响,但轮对加速度、轮轨力和轨道结构振动加速度的敏感波长随轨道刚度和阻尼的增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号