首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
根据基本轨与尖轨的相对位置及轨下支撑方式,分析车轮与转辙器钢轨的接触特性,在考虑尖轨与基本轨相对运动的基础上,提出铁路道岔转辙器部件轮轨两点接触的计算方法,以18号单开道岔为例,对比分析了标准和磨耗车轮LMA踏面与钢轨匹配时的轮轨接触特性,验证两点接触计算方法的正确性和可行性。研究表明:车轮踏面磨耗后,轮轨接触点位置更多的位于尖轨轨距角附近,会增大尖轨的侧面磨耗;车轮踏面磨耗会导致轮载转移的位置后移,增大车辆进入道岔时轮对蛇形运动的距离和幅度,进而导致横向轮轨动力相互作用的增大;磨耗后的车轮踏面,其轮轨两点接触的可能区域分布较为分散,可能造成轮轨接触点的无规律跳跃,从而引起较大的轮轨冲击振动作用。  相似文献   

2.
大功率机车轮轨接触应力计算分析   总被引:1,自引:0,他引:1  
轮轨关系是大功率机车车轮国产化的重要研究内容。轮轨接触应力分析是轮轨接触问题的基础。大功率机车轮对在运行过程中相对钢轨断面产生不同横移,直接影响轮轨接触应力。应用轮轨非线性接触理论及并行计算技术,构建大功率机车轮轨接触应力分析的大规模有限元模型,并在中国科学院研究生院计算地球动力学实验室的网络集群并行计算环境下完成有限元计算,研究了轮对横移量对大功率机车轮轨接触应力影响。计算结果表明,轮对不同横移时,车轮踏面内均出现塑性变形,塑性变形从车轮踏面内约6 mm处延伸至接触表面。轮轨接触斑的横向长度与接触面积随轮对横移量的变化有着相同的变化规律。随着横移量的改变,多数情况下的轮轨接触斑形态与Hertz理论的椭圆假设有较大差别。  相似文献   

3.
针对不同车辆的车轮直径差异问题,研究了车轮直径对轮轨接触几何关系、轮轨接触斑、轮轨最大接触应力、蠕滑率、车辆稳定性以及轮轨磨耗等的影响。通过计算可以得出:随着车轮直径增加,左右车轮滚动圆半径差逐渐增大,等效锥度随着车轮横移量逐渐增大;接触斑面积逐渐变大,轮轨接触最大应力显著下降;轮轨的横向和纵向蠕滑率逐渐减少;车辆的稳定性变好,车辆过曲线时的磨耗变大。  相似文献   

4.
轮轨内部剪切应力及其影响因素的研究   总被引:6,自引:0,他引:6  
文中计算了在垂向力、摩擦力以及垂向力和摩擦力联合作用下轮轨内部剪切应力的分布,研究了轴重、车轮踏面外形、车轮直径以及轮轨间摩擦系数对轮轨内部剪切应力的影响。并指出,降低轴重、采用磨耗形踏面,增大车轮直径都可以降低轮轨内部的剪切应力,以及随着轮轨间摩擦系数的增加,轮轨内部剪切应力不仅其值在增大,而且其位置也逐渐移向表面。  相似文献   

5.
根据轮对的准静态平衡方程确定车轮脱轨的临界条件.定义横向蠕滑力与法向力之比为等效摩擦系数,研究冲角和摩擦系数对脱轨临界状态时等效摩擦系数的影响规律.结果表明:轮缘接触侧和踏面接触侧的等效摩擦系数均与冲角呈现明显的反曲函数特征.通过以Boltzmann反曲函数拟和等效摩擦系数与冲角及摩擦系数的关系,提出了考虑冲角、摩擦系数及轮缘角影响的改进脱轨系数判别公式和轮重减载率公式.改进的脱轨系数判别公式不失Nadal脱轨准则的简洁性,改进的轮重减载率公式能够考虑作用于轮对上的横向力和垂向力的影响.改进公式的准确度受轮缘角和摩擦系数的影响不大,对不同的轮轨踏面配合及不同摩擦系数均可提供满意的脱轨判别限值.  相似文献   

6.
钢轨残余应力包括钢轨生产残余应力和轮轨循环滚动接触所产生的残余应力,两种残余应力共同决定了在役钢轨的损伤形式。提出了一种引入钢轨生产残余应力的有限元方法,采用Chaboche循环塑性本构模型,在接触表面施加循环移动的Kalker三维非赫兹接触法向、切向力和横向分布力模拟车轮运动,建立了曲线通过钢轨循环滚动接触有限元模型,并对钢轨循环滚动接触过程中残余应力-应变的变化规律进行研究。结果表明:随循环滚动次数的增加,钢轨生产残余应力很快重新分布并逐渐趋于稳定,而残余切应变则呈现近似线性增加;钢轨纵向残余应力和残余等效塑性应变随曲线半径的增加在数值上均逐渐减小、随摩擦系数的增加而逐渐增大、随纵向蠕滑率的增加而先增大后减小。  相似文献   

7.
以广州地铁1号线车轮和钢轨为例,运用有限元软件建立三维轮轨滚动接触有限元模型,对不同牵引力和不同横移量的轮轨滚动接触特性进行计算分析.结果表明牵引力改变轮轨接触Mises应力的分布;随着牵引力的增大,接触斑纵向摩擦力分量明显增大,接触斑后部最先出现蠕滑区,牵引力越大接触斑黏着区越小,蠕滑区越大;在横移为-5~5 mm范围内,接触斑分布在车轮踏面倾斜角为1∶46的斜面上,从这个角度看,该踏面与CHN60钢轨匹配并没有完全发挥磨耗型踏面增大接触面积、减小接触应力的作用.  相似文献   

8.
针对某高速铁路动车组车体抖动问题,采集不同线路工况下车体振动加速度及平稳性数据、不同磨耗车轮踏面及打磨前后钢轨廓形,研究不同线路工况、车轮踏面和钢轨廓形对动车组车体振动特征影响,研究镟轮后不同时期车轮踏面和打磨前后钢轨廓形匹配下轮轨几何接触关系。同时,采用实际线路及动车组车辆参数,基于多体动力学软件Simpack建立包含实测车轮踏面和钢轨廓形的车辆-轨道耦合系统动力学模型,计算车轮镟修和钢轨打磨对车辆关键动力学指标的影响。研究结果表明:该高速铁路动车组车体抖动主要发生在隧道工况内,体现为垂向和横向的综合异常振动;随车轮踏面磨耗增加,实测车体振动加速度逐渐增大,轮轨接触关系逐渐恶化,与未廓形打磨钢轨匹配时尤为明显;钢轨打磨可以有效抑制等效锥度随车轮踏面磨耗增加的不断增大,有效改善轮轨接触关系。车轮镟修和钢轨廓形打磨均可降低等效锥度,有效整治高速铁路动车组车体抖动。  相似文献   

9.
轮轨接触点对深化分析轮对运行动态行为、安全性、轮轨接触状态及作用力等起着关键的作用。基于传统车轮辐板应力测量车轮垂向力与横向力方法,考虑车轮磨耗影响,提出一种提高识别轮轨接触点准确度的改进测试方法。通过FEM程序ANSYS软件分析沿车轮踏面不同位置分别作用垂向、横向和纵向力时,车轮辐板表面的应力分布状态。由计算结果可知,沿辐板孔横向表面的径向应力分布随作用载荷位置(接触点)呈现特定的变化规律,为测试轮轨接触点位置提供了可行性。研究表明,在车轮辐板特定区域存在着对横向力和纵向力不敏感的应力区域,可消除由横向力和纵向力引起的干扰影响。根据计算和试验结果,找出车轮上应变片识别精度最佳的布置位置、方向和测试组桥方式,针对在线测试,完善测量桥路的可靠性和抗干扰性,使测试精度更高,接触点位置的确定更准确。分析因车轮踏面磨耗与镟修导致对车轮辐板表面应力分布产生影响的问题,推导出测试修正矩阵,扩展测量识别接触点的适用范围。完成测试轮对的研制,进行线路测试,获取了多种运行条件下接触点的测试结果。  相似文献   

10.
对国内某地铁线路的车轮磨耗规律进行了现场调查和分析。车轮磨耗集中于轮缘根部和踏面-25~30 mm范围。LM32模板动车车轮踏面磨耗突出区为-8~-4 mm,25万~40万km里程车轮最大磨耗量为2.5~4.0 mm。采用薄轮缘LM30模板镟轮的拖车车轮踏面磨耗集中在-10~10mm范围,19万km以内里程踏面磨耗量为0.2~0.5 mm。利用轮轨接触几何理论和轮轨滚动接触理论,研究不同车轮磨耗状态下的轮轨静态匹配性能,包括接触点对分布和轮轨接触应力,分析车轮表面裂纹的机理。车轮轮缘根部与钢轨轨距角集中接触容易导致接触光带偏向轨距角。轮缘根部及踏面上小曲率半径区与钢轨集中接触是产生车轮踏面接触疲劳的主要原因。  相似文献   

11.
曲线磨耗状态下轮轨弹塑性接触有限元分析   总被引:3,自引:0,他引:3  
基于现场实测的承载铁路小半径曲线段正常磨耗范围内典型轮轨型面.应用有限元分析软件AN-SYS建立轮轨三维接触有限元模型.模型考虑了车轮与钢轨的实际几何形状和边界条件,轮轨材料本构模型采用双线性随动强化弹塑性材料模型,计算分析曲线段不同磨耗程度车轮与钢轨的接触状态.计算结果表明:在相同载倚条件下,随着75 kg·m-1钢轨侧磨量的增加,轮轨接触斑面积呈增大趋势,钢轨最大Mises等效应力逐渐降低,轮轨踏面廓形逐渐相互匹配,接触状态得到改善;在钢轨侧磨量从0 mm增加剑5 mm过程中,轮轨接触状态变化较大,钢轨处于剧烈磨耗阶段,容易出现疲劳裂纹、剥离掉块等接触疲劳伤损,钢轨侧磨量超过5mm后,轮轨接触状态变化趋于平缓,钢轨处于稳定磨耗阶段.  相似文献   

12.
采用有限元分析软件对钢轨表面存在微裂纹的轮轨接触问题进行研究,依次考虑轴重、裂纹长度和车轮踏面形状对轮轨接触的影响,得到不同裂纹位置的应力强度因子。结果表明,磨耗型车轮踏面的应力强度因子比锥形车轮踏面小得多;轴重或裂纹长度的改变对钢轨的应力强度因子和微裂纹的扩展也有着显著影响;且在同一类型载荷作用下,随着轴重的增加,钢轨的疲劳寿命大幅下降。  相似文献   

13.
分别以与轮轨磨耗指数、临界速度和轮轨横向力相关的3个函数为目标函数,以圆弧型车轮型面的圆弧半径和圆心坐标为设计变量,以Nadal脱轨系数最大值不超过GB 5599—85标准规定的1.0、轮轨最大接触应力不超过车轮材料剪切强度3倍和车轮滚动接触疲劳因子小于0的要求为约束条件,给出了铁路客车车轮型面的多目标优化模型。以欧洲ERRI 200 km.h-1标准客车为例,利用铁道车辆动力学仿真软件ADAMS.2005/Rail建立铁路客车动力学模型,并用给出的型面优化模型对其LMa车轮型面进行多目标优化设计,结果表明,踏面型面优化后的车辆临界速度提高约50%,车辆通过曲线时的轮轨磨耗指数下降约12%。  相似文献   

14.
针对机车轮箍踏面出现的鳞状缺陷,通过对故障轮箍取样检验。发现缺陷处存在热影响组织,说明缺陷形成经历了超过轮箍钢相变点的高温过程。高温拉伸试验表明轮箍材料强度在超过400℃后迅速下降,因此轮箍踏面表层在高温下受轮轨接触应力作用而发生塑性变形甚至开裂。这解释了缺陷的外貌特征、变形组织和内部裂纹。对照AAR标准,确认该缺陷为制动时车轮滑动造成的"踏面堆积"。  相似文献   

15.
车轮凹磨作为货物列车车轮磨耗的一种主要形式,是影响货物列车提速性能的关键因素之一。为研究车轮凹磨对货物列车提速性能的影响,对阜淮线某型提速货物列车车轮磨耗进行跟踪测试。基于不同运营时期的磨耗车轮选取7种不同凹陷值下的车轮踏面廓形作为研究对象,并建立了车辆系统多体动力学模型,将不同凹陷值下的车轮踏面廓形输入车辆模型进行仿真。通过仿真计算和现场试验相结合的方法对不同凹磨状态下的轮轨接触特性和列车动力学性能进行分析。分析结果表明,随着车轮凹陷值的增长,踏面的等效锥度增大,出现凹磨的车轮踏面在名义滚动圆附近不易与钢轨形成有效的轮轨接触,导致轮轨接触点在此区域发生横向跳动,加剧了轮轨间横向冲击,导致轮对和构架的横向振动加速度增大,造成列车的稳定性和平稳性有所降低。随着车轮凹陷值的增加,车辆的临界速度会随之降低,致使货物列车提速范围受到限制。车轮踏面产生凹磨将对列车曲线运行稳定性和轮重减载率造成不利影响,但对脱轨系数影响不大。根据分析结果,建议运营速度提升至80 km/h的货物列车车轮凹陷值应控制在2.5 mm以内,以保证列车安全运营。  相似文献   

16.
在高速动车组的动力学试验中发现,车辆在跨线运行时构架横向谐波振动显著增大,该现象通常与车辆轮轨关系有直接的关联.通过对钢轨和车轮踏面进行测试来研究动车组实际轮轨接触关系,并基于不同线路钢轨和车轮踏面廓形存在的差异,分析轮轨接触关系出现差异的原因.分析结果表明,轮对横移量为0~3 mm范围内的等效锥度水平较大是造成车辆异...  相似文献   

17.
徐上 《中国铁道科学》2007,28(2):31-31,43,49,60,70,84
31 机车车辆车轮剥离原因分析及改进对策的研究 在大量现场统计分析的基础上,结合实际运用的特点,对典型样品进行车轮剥离的失效分析,指出机车车辆车轮剥离有4种类型:制动剥离、接触疲劳剥离、局部擦伤剥离、局部接触疲劳剥离。在同一失效车轮上可能存在上述剥离类型的1种或几种。制动剥离一般发生在踏面闸瓦制动的车轮上,是车轮踏面热机械损伤的主要表现形式,研究表明,它主要以制动热裂纹和马氏体碎裂2种形式出现。接触疲劳剥离指的是在轮轨接触应力作用下导致轮轨接触面表层金属塑性变形及疲劳裂纹萌生和发展的破坏方式。  相似文献   

18.
针对城轨列车车轮踏面存在的宏观裂纹,采用化学分析、硬度测试、金相观察等方法对踏面裂纹成因进行分析。车轮踏面裂纹为列车制动引起的热裂纹。车轮踏面制动时的高热区域表层组织会产生相变,形成马氏体组织,脆硬的马氏体组织在轮轨接触应力、制动热应力和组织应力的相互作用下极易碎裂萌生裂纹,裂纹在轮轨接触应力的持续作用下逐渐扩展,最终发展为宏观裂纹。建议城轨列车采用盘型制动,为了减少车轮的热裂敏感性,适当降低车轮的碳含量,选用ER8车轮,降低热裂纹产生的概率。  相似文献   

19.
为准确计算轮轨切向接触阻尼,基于接触阻尼理论,考虑轮轨材料的弹塑性变形和车轮表面粗糙度,采用有限元法,将轮轨材料的接触面进行离散;基于罚函数面-面接触算法定义轮轨接触,建立轮轨粗糙表面接触有限元简化模型;通过间接输入实际车轮表面硬度数据并且加载位移载荷来计算轮轨切向接触阻尼损耗因子和轮轨切向接触阻尼.仿真结果表明:轮轨切向接触阻尼损耗因子随着法向载荷、摩擦系数和车轮表面硬度的增加而减小,而粗糙度对其影响不大;轮轨切向接触阻尼与法向载荷、材料表面的摩擦系数及材料表面的硬度呈正相关;随着摩擦系数的增大,轮轨切向接触阻尼先增大后趋于稳定;轮轨切向接触阻尼与运行里程数并非呈现单调性变化.因此,当考虑轮轨材料表面粗糙度微观结构时,更能够反映实际情况.  相似文献   

20.
运用多体动力学软件UM,建立高速综合检测列车非线性动力学仿真模型.根据京沪高速铁路试验数据,对车体和构架的振动加速度以及在半径为9 000m曲线上的稳态轮轴横向力进行仿真,并与试验结果对比,验证仿真模型的准确性.应用该模型,分别分析车轮的设计型面、磨耗型面和镟修型面与CHN60钢轨接触的3种不同高速列车的横向稳定性.结果表明:在车轮镟修型面和设计型面的轮轨状态下,高速列车的横向稳定性指标相当;而车轮踏面的磨耗会降低高速列车的横向稳定性.调整轨底坡虽然可以改善磨耗型面车轮高速列车的横向稳定性,但同时又会导致设计型面和镟修型面车轮高速列车的横向稳定性恶化;8辆编组的高速综合检测列车各车辆之间的横向稳定性存在明显差异,且随着速度的增大这种差异也不断扩大,其中头车和尾车的横向稳定性比较差;车速为300 km·h-1以上时磨耗功率和轮轨磨耗急剧增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号