首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对比分析了国内外车辆侧翻稳定性相关的标准法规的基本情况。研究了车辆发生侧翻的类型和机理,基于侧向加速度判断车辆侧翻状态的方法,通过整车道路试验对比了正弦停滞试验和鱼钩试验诱导车辆发生侧翻的效果,初步探讨了多用途乘用车侧翻稳定性动态测试方法和评价指标,为国内车辆侧翻稳定系统的开发和测评标准的制定提供了参考。  相似文献   

2.
汽车操纵性和稳定性的联合优化   总被引:2,自引:0,他引:2  
在二自由度汽车操纵动力学模型和汽车开环系统操纵性、稳定性评价指标的基础上,提出了同时考虑汽车操纵性和稳定性的加权操纵稳定性评价指标,以及考虑各种车速重要性的加权均匀操纵稳定性评价指标。应用复合形法,对汽车操纵性和稳定性进行的联合优化实例表明,利用所提出的加权均匀操纵稳定性评价指标,可以有效地实现汽车操纵性和稳定性在所有车速范围内的优化。  相似文献   

3.
汽车操纵稳定性的主观评价是现代车辆开发过程中的重要组成部分,开发前期的性能定标和最终的主观调校,都需要主观评价来完成。介绍了评车师主观评价能力检验方法——信噪比方法和相关分析方法。建立了包括评价指标、试验方法、打分依据和打分方法的车辆操纵稳定性主观评价体系,并利用信噪比分析和相关分析方法对主观评车师评价能力进行了检验。  相似文献   

4.
This paper presents a method for estimating the vehicle side slip angle, which is considered as a significant signal in determining the vehicle stability region in vehicle stability control systems. The proposed method combines the model-based method and kinematics-based method. Side forces of the front and rear axles are provided as a weighted sum of directly calculated values from a lateral acceleration sensor and a yaw rate sensor and from a tire model according to the nonlinear factor, which is defined to identify the degree of nonlinearity of the vehicle state. Then, the side forces are fed to the extended Kalman filter, which is designed based on the single-track vehicle model associated with a tire model. The cornering stiffness identifier is introduced to compensate for tire force nonlinearities. A fuzzy-logic procedure is implemented to determine the nonlinear factor from the input variables: yaw rate deviation from the reference value and lateral acceleration. The proposed observer is compared with a model-based method and kinematics-based method. An 8 DOF vehicle model and Dugoff tire model are employed to simulate the vehicle state in MATLAB/SIMULINK. The simulation results shows that the proposed method is more accurate than the model-based method and kinematics-based method when the vehicle is subjected to severe maneuvers under different road conditions.  相似文献   

5.
A method to study handling characteristics of a vehicle moving along a curved path is presented. A simple bicycle model and a feedback controller with proportional gain are used to simulate the vehicle and the driver. The lateral stability of the vehicle/driver system is analyzed by using the root locus method and numerical integration in the time domain. The effect of the curvature on the system stability is discussed in detail. A new suggestion is made for the look ahead distance to calculate the preview lateral error of the vehicle with respect to the center of the road. Interesting results are shown for some important parameters such as the gain factor, the vehicle speed and the curvature of the path. Possible extensions of the method to more general cases and other applications are discussed.  相似文献   

6.
轮胎对汽车稳定性有重要影响,研究和利用轮胎的非线性特性有助于扩展汽车的稳定域。本文基于非线性轮胎模型,提出一种改进型线性时变模型预测控制(LTV-MPC)方法。该方法能扩展主动前轮转向汽车的稳定范围,提高极限工况下主动前轮转向汽车的稳定性。仿真结果表明,该方法比传统的LTV-MPC方法具有更好的稳定性控制效果。  相似文献   

7.
针对改扩建高速公路单侧加宽方案老路利用时可能存在的行车稳定性问题,应用基于车辆动力学的建模仿真方法,采用联合仿真技术,在Carsim/Trucksim仿真软件中得到车辆在横坡组合路段行驶过程中车轮的垂直载荷与车辆侧向加速度;在Simulink中计算车辆的横向载荷转移率和侧向加速度;通过上述指标分析车辆横向侧翻和侧滑稳定性,判断车辆在改扩建公路横坡组合路段上的行驶稳定性;联合仿真结果表明,车辆在横向坡度为2%和1.5%、换道路长为120 m和80 m的横坡组合路段上行驶均具有良好的横向稳定性;该方法可用于其他道路和驾驶行为的车辆稳定性分析.   相似文献   

8.
The mathematical analysis of vehicle stability has been utilised as an important tool in the design, development, and evaluation of vehicle architectures and stability controls. This paper presents a novel method for automatic generation of the linearised equations of motion for mechanical systems that is well suited to vehicle stability analysis. Unlike conventional methods for generating linearised equations of motion in standard linear second order form, the proposed method allows for the analysis of systems with non-holonomic constraints. In the proposed method, the algebraic constraint equations are eliminated after linearisation and reduction to first order. The described method has been successfully applied to an assortment of classic dynamic problems of varying complexity including the classic rolling coin, the planar truck–trailer, and the bicycle, as well as in more recent problems such as a rotor–stator and a benchmark road vehicle with suspension. This method has also been applied in the design and analysis of a novel three-wheeled narrow tilting vehicle with zero roll-stiffness. An application for determining passively stable configurations using the proposed method together with a genetic search algorithm is detailed. The proposed method and software implementation has been shown to be robust and provides invaluable conceptual insight into the stability of vehicles and mechanical systems.  相似文献   

9.
In this paper, a novel direct yaw control method based on driver operation intention for stability control of a distributed drive electric vehicle is proposed. It was discovered that the vehicle loses its stability easily under an emergency steering alignment (EA) problem. An emergent control algorithm is proposed to improve vehicle stability under such a condition. A driver operation intention recognition module is developed to identify the driving conditions. When the vehicle enters into an EA condition, the module can quickly identify it and transfer the control method from normal direct yaw control to emergency control. Two control algorithms are designed. The emergency control algorithm is applied to an EA condition while the adaptive control algorithm is applied to other conditions except the EA condition. Both simulation results and real vehicle results show that: The driver module can accurately identify driving conditions based on driver operation intention. When the vehicle enters into EA condition, the emergent control algorithm can intervene quickly, and it has proven to outperform normal direct yaw control for better stabilization of vehicles.  相似文献   

10.
为了提高四轮独立驱动智能电动汽车在变曲率弯道下的轨迹跟踪精度和横摆稳定性,提出了一种模型预测控制与直接横摆力矩控制协同的综合控制方法。建立了横纵向耦合的车辆动力学模型,采用2阶龙格库塔离散法保证了离散模型的精度,并基于简化的2自由度动力学模型推导了车辆横摆稳定性约束,设计了非线性模型预测控制器;利用直接横摆力矩控制能够改变车辆横摆角速度和航向角的特点,考虑模型预测控制器的预测状态、控制量以及跟踪误差,设计了协同控制规则。仿真结果表明,协同控制方法解决了考虑横摆稳定性约束的模型预测控制器中存在的稳定性约束与控制精度相矛盾的问题,并补偿了模型预测控制器没有可行解时对横摆稳定性的约束,同时提高了智能汽车的轨迹跟踪精度和横摆稳定性。  相似文献   

11.
独立悬架汽车转向系统刚度测量   总被引:6,自引:0,他引:6  
赵剑  管迪华 《汽车工程》2001,23(5):337-339
汽车转向系统刚度是影响汽车操纵稳定性的重要因素之一,本文介绍了一种实用的测量独立悬架汽车转向系统刚度的试验方法,分析了汽车转向系统的受力状况,推导了转向系统中各环节刚度的计算公式,对一辆实车进行的试验测量得到了可靠的数据结果,对进一步探讨转向系统刚度对汽车操纵稳定性的影响具有重要的意义。  相似文献   

12.
文章针对某混合动力车型怠速工况不规则抖动问题,采用振动测试明确了问题的抖动特征,并通过发动机怠速工况燃烧稳定性及动力总成悬置系统刚体模态测试结果,确认了产生抖动问题的原因,最终提出调整排气VVT相位来改善发动机怠速工况的燃烧稳定性,进而解决了车内不规则怠速抖动问题。该研究对解决混合动力新能源车型的怠速抖动问题具有重要参考意义。  相似文献   

13.
Summary In-wheel-motors are revolutionary new electric drive systems that can be housed in vehicle wheel assemblies. Such E-wheels permit packaging flexibility by eliminating the central drive motor and the associated transmission and driveline components, including the transmission, the differential, the universal joints and the drive shaft. Apart from many advantages of such a system, unequalled independent wheel control allows vehicle dynamic improvement to assist the driver in enhancing cornering and straight-line stability on slippery roads and in adverse ground conditions. In this paper a Fuzzy logic driver-assist stability system for all-wheel-drive electric vehicles based on a yaw reference DYC is introduced. The system assists the driver with path correction, thus enhancing cornering and straight-line stability and providing enhanced safety. A feed-forward neural network is employed to generate the required yaw rate reference. The neural net maps the vehicle speed and the steering angle to give the yaw rate reference. The vehicle true speed is estimated using a multi-sensor data fusion method. Data from wheel sensors and an embedded accelerometer are fed into an estimator, where a Fuzzy logic system decides which input is more reliable. The efficiency of the proposed system is approved by conducting a computer simulation. The proposed control system is an effective and easy to implement method to enhance the stability of all-wheel-drive electric vehicles.  相似文献   

14.
车辆在附着系数较小的圆曲线路段转向时,轮胎会处于非线性区内工作,此时基于线性理论的侧向稳定性分析方法会产生较大误差.建立6自由度非线性车辆系统模型,分析其处于非线性域与线性域下不同的特性状态,得到不同车速、路面附着系数下使车辆系统处于临界状态的圆曲线路段半径、超高设计指标.对线性域与非线性域内的车辆系统分别采用基于线性...  相似文献   

15.
Summary In-wheel-motors are revolutionary new electric drive systems that can be housed in vehicle wheel assemblies. Such E-wheels permit packaging flexibility by eliminating the central drive motor and the associated transmission and driveline components, including the transmission, the differential, the universal joints and the drive shaft. Apart from many advantages of such a system, unequalled independent wheel control allows vehicle dynamic improvement to assist the driver in enhancing cornering and straight-line stability on slippery roads and in adverse ground conditions. In this paper a Fuzzy logic driver-assist stability system for all-wheel-drive electric vehicles based on a yaw reference DYC is introduced. The system assists the driver with path correction, thus enhancing cornering and straight-line stability and providing enhanced safety. A feed-forward neural network is employed to generate the required yaw rate reference. The neural net maps the vehicle speed and the steering angle to give the yaw rate reference. The vehicle true speed is estimated using a multi-sensor data fusion method. Data from wheel sensors and an embedded accelerometer are fed into an estimator, where a Fuzzy logic system decides which input is more reliable. The efficiency of the proposed system is approved by conducting a computer simulation. The proposed control system is an effective and easy to implement method to enhance the stability of all-wheel-drive electric vehicles.  相似文献   

16.
The paper presents a new method to study the dynamic properties of the bridge-vehicle system. The transfer function of the system is obtained by iteration in the frequency domain instead of the time domain. The relationship between vehicle speed and the lowest natural frequency of the system is investigated and a parametric study of the system stability is made. The varying parameters concerned are the vehicle speed, the ratio of vehicle mass to bridge mass, the ratio of vehicle eigenfrequency to bridge eigenfrequence, and the relative damping of the vehicle and bridge.  相似文献   

17.
ADAMS软件在汽车操纵稳定性研究中的应用   总被引:1,自引:0,他引:1  
以转向盘转角阶跃输入为例,说明采用ADAMS对车辆操纵稳定性进行研究评价的方法及过程。利用AD-AMS软件可以进行不同车速、不同载荷下的操纵稳定性仿真,能够对车辆的操纵稳定性做出预测,为设计提供参考,这对于车辆开发前期对车辆性能的预测十分重要。  相似文献   

18.
Active Roll Control of Single Unit Heavy Road Vehicles   总被引:5,自引:0,他引:5  
Summary Strategies are investigated for controlling active anti-roll systems in single unit heavy road vehicles, so as to maximise roll stability. The achievable roll stability improvements that can be obtained by applying active anti-roll torques to truck suspensions are discussed. Active roll control strategies are developed, based on linear quadratic controllers. It is shown that an effective controller can be designed using the LQG approach, combined with the loop transfer recovery method to ensure adequate stability margins. A roll controller is designed for a torsionally flexible single unit vehicle, and the vehicle response to steady-state and transient cornering manoeuvres is simulated. It is concluded that roll stability can be improved by between 26% and 46% depending on the manoeuvre. Handling stability is also improved significantly.  相似文献   

19.
汽车轨迹测量的速度积分方法及其实施技术   总被引:7,自引:0,他引:7  
汽车质心的运动轨迹作为最直观的试验结果对汽车操纵稳定性、制动性等运动性能的研究和设计,特别是对于驾驶员-汽车闭环系统运动性能的分析和评价十分重要。研究了速度积分法求解汽车质心运动轨迹的原理和试验技术,并利用某轿车的场地试验进行了试验验证。这一方法具有可靠、快速、操作简便和适用面广等优点。  相似文献   

20.
刚柔耦合多体车辆操纵稳定性研究   总被引:9,自引:3,他引:9  
夏长高  宫镇 《汽车工程》2004,26(5):564-567
利用多体动力学方法建立了基于ADAMS软件平台的整车刚柔耦合多体系统操纵动力学仿真分析模型。并分别对多刚体模型和刚柔耦合多体模型进行了“转向盘脉冲输入”、“ISO移线”仿真,分析了构件的柔性对汽车操纵稳定性的评价指标值的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号