首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
为了将LIM型轨道涡流制动装置应用于高速列车,对电磁线圈的小型化和轻量化进行了研究。  相似文献   

2.
根据相似准则在MM 10 0 0型摩擦磨损试验机上进行高速列车摩擦制动模拟试验 ,研究了SiC颗粒增强铝基复合材料和铜基粉末冶金闸片配对时的制动摩擦性能 ,探讨使用铝基复合材料制动盘的可能性。模拟试验结果表明 :铝基复合材料制动盘和铜基粉末冶金闸片配副进行摩擦制动时具有制动温升低 ,摩擦因数稳定和耐磨性好的优点 ,能满足高速列车的制动性能要求  相似文献   

3.
为了进一步提高已投入应用的合金铸铁闸瓦的制动性能以适应高速机车车辆的需要,提出了向车轮-闸瓦摩擦界面供给硬质SiC陶瓷粒子以提高制动时的摩擦系数和缩短高速制动时的制动距离的方案。研究了三种陶瓷粒子供给方式:向车轮-闸瓦间喷射陶瓷粒子;在车轮踏面上压紧陶瓷粒子块;在铸铁间瓦铸造时埋铸圆柱状陶瓷粒子块。对上述三种方案进行了试验台制动性能试验,结果表明,在制动初速度为125km/h时,与单独使用合金铸铁  相似文献   

4.
对高速列车制动系统的几种典型制动方式的机理及性能进行比较研究,介绍国外高速列车制动系统的技术现状,对我国高速列车制动系统的发展有一定的借鉴作用。  相似文献   

5.
高速动车组电空制动系统试验台   总被引:1,自引:0,他引:1  
中国铁道科学研究院建设了高速铁路系统试验国家工程实验室高速动车组制动系统试验室,这是一个具有国际先进水平的高速动车组制动系统试验研究和创新平台,实现对300~500km/h高速动车组制动系统及关键部件的研究性试验、性能试验和可靠性试验。高速动车组电空制动系统试验台是试验室的重要组成部分。试验台围绕高速动车组制动系统的发展方向和关键技术,可以进行高速动车组微机控制直通电空制动系统的匹配特性试验、系统联调试验和测试验证。还可以进行高速动车组制动系统关键气动部件和电气部件的性能试验、可靠性试验及测试验证。  相似文献   

6.
高速列车制动系统性能的探讨   总被引:2,自引:1,他引:1  
从高速列车的特点出发,对列车制动系统缓解后的充风时间、电空制动控制方式、制动方式的配合和控制性能等进行探讨。着重探讨紧急制动距离以外的高速列车制动系统性能方面的问题。  相似文献   

7.
关于高速列车制动距离的研究   总被引:5,自引:3,他引:2  
根据高速列车的运行特点和制动性能要求,概述高速列车的制动课题,从而说明高速试验列车制动系统技术条件编制的主要依据和设计原则,特别对纯摩擦制动和复合制动两种不同工况的紧急制动距离进行分析比较,并提出高速列车制动能量分配的设计建议,以供高速试验列车的应用。  相似文献   

8.
制动系统是高速列车关键技术之一。随着列车运行时速的提高,采用组合制动方式来保证高速列车紧急制动时达到规定的制动距离成为常见的做法。近年来,传统机械制动方式日趋成熟,因此,不依赖轮轨间黏着的非黏着制动方式越来越受到相关设计人员的重视。介绍了一种基于某型速度400km/h动车组列车开发的高速列车"蝶形"风阻制动装置,该型风阻制动装置采用小型风阻板进行空气动力制动,质量较轻,结构较简单。通过在车顶合理布置,可将风阻制动力分散于整车,提升紧急制动时的运行稳定性。阐述了其基本原理、开闭机构、响应时间等性能和技术指标,并采用计算流体力学(CFD)方法对其进行了不同工况下制动力的计算评估。  相似文献   

9.
张犀  杨欣  邵军 《铁道机车车辆》2011,31(5):138-141
介绍了用于高速动车组制动性能测试系统的硬件配置及配套测试软件。针对高速动车组制动试验测点多、信号类型多、采集车辆多等高速运行条件下如何布置测试设备及信号采集时的数据同步,保存,处理流程等问题和解决方法进行了阐述。  相似文献   

10.
为缩短高速列车在紧急制动时的停车距离,研制出一种小型化、轻量化的空气动力制动装置。为了检测其空气动力特性,在风洞设施中以400 km/h的最高流速对全尺寸原型装置进行了试验。试验结果表明,装置展开的响应时间只有0.39 s,原型装置每个单元能够产生2.3 kN的气动阻力。此外,利用计算流体动力学(CFD)对性能进行了计算。对设有大量设备的车顶周围进行CFD分析,结果表明交错布置的装置与标准平行布置的相比,总阻力可增加10%。  相似文献   

11.
广深线准高速客车盘形制动研究   总被引:4,自引:0,他引:4  
钱立新  孙福祥 《铁道车辆》1995,33(12):98-110
论述了广深线160km/h准高速客车客车用大功率盘形制动装置;制动盘与闸片的结构与材质研究;制动盘通风散热性能试验及耐热裂性能计算机模拟及实物验证试验;盘形制动摩擦-摩擦-靡损性能试验研究。以及在环行线进行的准高速客车溜放制动试验及准高速列车制动运行试验。试验结果表明,所研究的大功率盘形制动装置能满足准高速客车制动要求,160km/h速度下列车的紧急制动距离均小于提出的1400m要求。  相似文献   

12.
双连续相复合材料在高速列车制动盘及闸片中的应用   总被引:1,自引:0,他引:1  
简述了国内外对高速列车制动材料的研究概况,探讨了高速列车制动系统对制动材料的要求,分析了双连续相复合材料的性能及其在高速列车制动系统中的应用前景.  相似文献   

13.
高速列车制动技术综述   总被引:4,自引:1,他引:3  
阐述了制动系统与高速列车安全性的关系,综述了高速列车的制动方式及其性能,并给出各自在国内外高速列车上的应用情况;介绍了高速列车空电联合制动力的控制模式并就各种模式的优缺点进行对比,概述了高速列车的防滑再粘着控制技术,论述了高速列车制动技术的发展趋势.  相似文献   

14.
高速列车基础制动系统的设计研究   总被引:7,自引:0,他引:7  
结合270km·h-1高速列车基础制动系统的研制现状,在大量试验和仿真计算的基础上,计算和分折盘形制动的受载机理、材料性能及盘形制动功率极限。通过比选分配复合制动和纯空气制动等不同工况的制动力,计算动力车和拖车的制动缸压力。通过计算分析得出,270km·h-1高速列车采用动力制动和盘形制动时的制动距离为3514 7m,能够满足高速列车的制动初速为270km·h-1时紧急制动距离小于3700m的要求。但是,经分析认为当运行速度超过250km·h-1时,除采用动力制动和盘形制动外,还是应同时采用涡流制动、磁轨制动等多种制动方式,以减轻盘形制动的负荷,延长制动盘和闸片的使用寿命,降低运营成本。  相似文献   

15.
高速动车组引进制动系统技术探讨   总被引:1,自引:0,他引:1  
介绍了国外高速动车组先进制动系统的技术现状,并进行了分析比较;结合我国高速动车组制动系统现状,提出了引进国外高速动车组制动系统时应注意的问题。  相似文献   

16.
简述机车车辆基础制动装置性能试验的发展情况,简要介绍了新建高速基础制动试验台的基本原理、主要技术指标和测试参数,阐述了高速盘形制动装置性能试验的一般方法,为实际开展相关试验和研究提供参考。  相似文献   

17.
高速列车粉末冶金制动闸片的研制   总被引:1,自引:0,他引:1  
针对我国高速列车对制动闸片材料的性能要求,采用粉末冶金加压烧结工艺制备了高速列车用制动闸片。通过对材料的组合和工艺参数的试验研究,制备了6种体系的铜基摩擦材料,对其进行力学性能及1:1摩擦制动性能试验,从中获得一种铜基粉末冶金摩擦材料。研究表明:该种制动闸片的材料具有较高的抗压强度、高而稳定的摩擦因数、低的磨损和良好的制动性能,能满足300 km/h高速列车的制动要求。  相似文献   

18.
高速动车组电空制动系统是由气动元件、电子元件和基础制动装置组成的复杂系统。基于现代流体力学的仿真分析软件AMESim建立制动系统中关键气动元件的仿真模型,通过试验数据对仿真模型进行验证和参数修正;将封装的气动元件模型与电子元件模型和基础制动装置进行系统集成,建立单车以及列车级电空制动系统仿真模型。基于列车级电空制动系统仿真模型,对高速动车组电空制动系统参数进行配置和分析,设计高速动车组电空制动系统。在最大常用制动和紧急制动2种工况下对基于仿真模型设计的高速动车组电空制动系统进行验证。结果表明:最大常用制动时减速度仿真值与减速度设计值相符;紧急制动时制动距离试验值为5 670m,仿真计算值为5 795m,相对误差为2.2%,仿真计算值与试验值吻合程度高。  相似文献   

19.
动车组高速制动时,由于车辆自身阻力及风阻作用,制动盘承受的热负荷会降低。建立了高速制动时考虑车辆阻力的11制动动力试验模型。利用高速11制动动力试验台,研究了制动初速度350km/h时车辆阻力对制动盘热负荷的影响,使11制动动力试验工况与现车更接近,得到的试验结果更符合实际。  相似文献   

20.
采用流体仿真分析软件FLUENT研究制动风翼尾迹的影响范围及制动风翼纵向间距对制动效果的影响,同时分析制动风翼不同横向间距对制动阻力影响的规律.结果表明:2幅制动风翼的纵向间距越大.列车前部制动风翼对后部制动风翼的尾迹影响越小,当2幅制动风翼的纵向间距超过2节车厢长度时,这种影响完全消失;在制动风翼面积相同的条件下,增大每幅2片制动风翼的横向间距,能够提高风翼的单位面积制动阻力;由制动风翼产生的制动瞬时减速度随制动初速度的增加而增加,在紧急制动初速度为500km>h-1时由制动风翼产生的制动合阻力约为160kN.此时的制动瞬时减速度约为0.33m.s-1,可知,列车高速运行时由空气动力制动产生的制动阻力对高速列车制动贡献很大,空气动力制动在高速时具有优良制动性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号