首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Processes involved in erosion, transport and deposition of cohesive materials are studied in a transect from shallow (16 m) to deep (47 m) water of the SW Baltic Sea. The wave- and current-induced energy input to the seabed in shallow water is high with strong variability and suspended matter concentrations may double within a few hours. Primary settling fluxes (from sedimentation traps) are less than 10 g m−2 day−1, whereas resuspension fluxes (evaluated from sedimentation flux gradients) are 15–20 times higher and the residence time for suspended matter in the water column is 1–2 days. Settling velocities of aggregates are on average six times higher than for individual particles resulting in an enhanced downward transport of organic matter. Wave-induced resuspension (four to six times per month) takes place with higher shear stresses on the bottom than current-induced resuspension (three to five times per month). The short residence time in the water column and the frequent resuspension events provide a fast operating benthic–pelagic coupling. Due to the high-energy input, the shallow water areas are nondepositional on time scales longer than 1–2 weeks. The sediment is sand partly covered by a thin fluff layer during low-energy periods. The presence of the fluff layer keeps the resuspension threshold very low (<0.023 N m−2) throughout the year. Evaluated from 3-D sediment transport modeling, transport from shallow to deep water is episodic. The net main directions are towards the Arkona Basin (5.5×105 t per year) and the Bornholm Basin (3.7×105 t per year). Energy input to the bottom in deep water is low and takes place much less frequently. Wave-induced resuspension occurs on average once per month. Residence time of particles (based on radioactive isotopes) in the water column is half a year and the sediment accumulation rate is 2.2 mm year−1 in the Arkona Basin.  相似文献   

2.
3.
Activities of the naturally occurring, short-lived and highly particle-reactive radionuclide tracer 234Th in the dissolved and particulate phase were measured at three shallow-water stations (maximum water depths: 15.6, 22.7 and 30.1 m) in Mecklenburg Bay (south-western Baltic Sea) to constrain the time scales of the dynamics and the depositional fate of particulate matter. Activities of particle-associated (> 0.4 μm) and total (particulate + dissolved) 234Th were in the range of 0.08–0.11 dpm L− 1 and 0.11–0.20 dpm L− 1, respectively. The activity ratio of total 234Th and its long-lived and conservative parent nuclide 238U was well below unity (range: 0.09–0.19) indicating substantial radioactive disequilibria throughout the water column, very dynamic trace-metal scavenging and particle export from the water column at all three stations. For the discussion the 234Th data of this study were combined with previously published water-column 234Th and particulate-matter data from Mecklenburg Bay (Kersten et al., 1998. Applied Geochemistry 13, 339–347). The resulting average vertical distribution of total 234Th/238U disequilibria was used to estimate the depositional 234Th flux to the sediment. There was a virtually constant net downward flux of 234Th of about 28 dpm m− 2 d− 1 leaving each water layer of one meter thickness. Thorium-234-derived net residence times of particulate material regarding settling from a given layer in the water column were typically on the order of days, but with maximum values of up to a couple of weeks. Based on an average ratio of particulate matter (PM) to particle-associated 234Th a net flux of about 145 mg PM m− 2 d− 1 was estimated to leave each water layer of one meter thickness. The estimated cumulative water-column-derived particulate-matter fluxes at the seafloor are higher by a factor of about 2 than previously published sediment-derived estimates for Mecklenburg Bay. This suggests that about half of the settling particulate material is exported from the study area and/or subject to processes such as mechanical breakdown, remineralisation and dissolution. Lateral particulate-matter redistribution and particle breakdown in the water column (as opposed to the sediment) seem to be favoured by (repeated) particle resuspension from and resettling to the seafloor before ultimate sedimentary burial. The importance of net lateral redistribution of particulate material seems to increase towards the seafloor and be particularly high within the bottommost few meters of the water column.  相似文献   

4.
Variations in oxygen conditions below the permanent halocline influence the ecosystem of the Baltic Sea through a number of mechanisms. In this study, we examine the effects of physical forcing on variations in the volume of deep oxygenated water suitable for reproductive success of central Baltic cod. Recent research has identified the importance of inflows of saline and oxygenated North Sea water into the Baltic Sea for the recruitment of Baltic cod. However, other processes have been suggested to modify this reproduction volume including variations in timing and volume of terrestrial runoff, variability of the solubility of oxygen due to variations in sea surface temperature as well as the influence of variations in wind stress. In order to examine the latter three mechanisms, we have performed simulations utilizing the Kiel Baltic Sea model for a period of a weak to moderate inflow of North Sea water into the Baltic, modifying wind stress, freshwater runoff and thermal inputs. The model is started from three-dimensional fields of temperature, salinity and oxygen obtained from a previous model run and forced by realistic atmospheric conditions. Results of this realistic reference run were compared to runs with modified meteorological forcing conditions and river runoff.From these simulations, it is apparent that processes other than major Baltic inflows have the potential to alter the reproduction volume of Baltic cod. Low near-surface air temperatures in the North Sea, the Skagerrak/Kattegat area and in the western Baltic influence the water mass properties (high oxygen solubility). Eastward oriented transports of these well-oxygenated highly saline water masses may have a significant positive impact on the Baltic cod reproduction volume in the Bornholm Basin.Finally, we analysed how large scale and local atmospheric forcing conditions are related to the identified major processes affecting the reproduction volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号