首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing regional mobility demand amid rising roadway congestion has motivated plans for passenger ferry expansion and modernization in many parts of the US. While this trend applies to ferry systems in Alaska, New York, Boston, and Washington state, efforts to expand ferry service in the San Francisco Bay Area are unique in scale and vision. Integrating ferry service into the regional, door-to-door transit system can significantly increase water-crossing capacity for commuters. However, to realize this potential, the ferry industry must meet several challenges associated with growth, including environmental impacts. In particular, concern over air pollution emissions from marine engines is motivating new comparisons between ferries and other transportation modes in terms of both mobility and air pollution. This paper describes the current debate about ferry system operation and expansion, and presents a parametric analysis comparing existing, uncontrolled ferry emissions to automobiles. Under all reasonable assumptions, we show that diesel-powered ferries without emissions controls will produce more NOx and PM, but less CO per passenger-trip than if those people commuted by car under current conditions. This paper also projects the emissions from the expanded ferry system proposed for the San Francisco Bay Area, showing that a larger ferry fleet equipped with new engines meeting future EPA emissions standards could become one of the major non-road NOx sources in the region. We conclude by outlining the alternatives and challenges to reduce ferry emissions so that they are more comparable to automobile emissions. Policy implications of these alternatives are also discussed.  相似文献   

2.
This paper examines the role of marine engine maintenance in reducing pollution. It tests four marine diesel engines, one constructed prior to January 1, 2000 and three after 2000. This paper explains how the condition of an engine’s nozzles and faulty injection pressure significantly influence NOx and CO emissions and describes both bench and onboard ship tests, on engines fitted with new or worn nozzles at different injection pressures. The tests showed that, when the engine constructed prior to 2000 operates under normal in-service conditions, the emissions are within limits, but, with a small fault in injection timing, the NOx emissions exceed the limits. For the engines constructed after 2000, a fault in the maintenance of the nozzles increases the CO emissions to a high level.  相似文献   

3.
NOX emission rates of 13 petrol and 3 diesel passenger cars as a function of average speed from 10 to 120 km/h, emission class (pre-Euro 1 – Euro 5), engine type were investigated by on-board monitoring on roads and highways of St. Petersburg using a portative Testo XXL 300 gas analyzer. The highest level of NOX emission 0.5–2.5 g/km was inherent to old pre-Euro 1 petrol cars without a catalytic converter. NOX emissions rates of Euro 1 and Euro 2 petrol cars changed within 0.15–0.9 g/km, Euro 3 – 0.015–0.27 g/km, Euro 4 – 0.013–0.1 g/km, Euro 5 – 0.002–0.043 g/km. Euro 3 – Euro 4 petrol cars generally satisfied corresponding NOX Emission Standards (ES), except cold-start period, Euro 5 petrol cars did not exceed ES. Warmed, stabilized engines of Euro 3 – Euro 5 petrol cars showed 5–10 times lower NOX emission rates than corresponding ES in the range of speed from 20 to 90 km/h. NOX emission rates of diesel Euro 3 and Euro 4 cars varied from 0.45 to 1.1 g/km and from 0.31 to 1.1 g/km, respectively. Two examined diesel Euro 3 and one Euro 4 passenger vehicles did not satisfy NOX ES at real use. Euro 3 diesel cars showed 28.9 times higher NOX emissions than Euro 3 petrol cars and Euro 4 diesel car demonstrated 17.6 times higher NOX emissions than Euro 4 petrol cars at warmed and stabilized engine at a cruise speed ranging from 30 to 60 km/h.  相似文献   

4.
Emissions from the exhausts of marine diesel engines comprises several different gases including NOX. These are currently regulated at the international level under Regulation 13 of ANNEX VI of MARPOL 73/78, but this regulation only applies to new engines and is based on bench tests, for only a single engine designated the “parent engine”. Here, the need to take measurements from across their whole range and once in operation on board a vessel is examined. This would not only improve assessment of new equipment against the current regulation, but would also detect defects in the functioning of the engine.  相似文献   

5.
After having implemented numerous regulations, e.g., coercive policies on vehicle use and purchase, it is becoming increasingly difficult to find further potential to control vehicle emissions in Beijing, as the air quality is still poor. This research provides a different approach for policy-makers to reduce vehicle emissions by managing demand. We found that parents ferrying their children to and from school is an important but long-neglected contributor to traffic congestion and vehicle emissions. This phenomenon is very common in China because of the social culture. In this research, parallel tests during both the school season and the non-school season were adopted, and emissions in both seasons were calculated based on travel demand and emission models. The results revealed that emissions factors (in g/km) for criteria pollutants and CO2 increased by over 10% during rush hours during the school season due to traffic condition deterioration compared with non-school season. Daily HC, CO, NOx, PM and CO2 emissions from the passenger car fleet were 8.3%, 7.8%, 6.4%, 6.3% and 6.5% higher compared with those during the non-school season, respectively. These differences are greater than the total vehicular emission reduction by other control measures in 2014 in Beijing. For policy makers, providing safe and efficient ways to ferry children would be a useful and harmonious strategy for future vehicle emission control.  相似文献   

6.
Due to growing concerns about NOx and particulate matter (PM) emissions from diesel engines, stricter regulations are being introduced requiring advanced emission control technology. In response the diesel industry has begun testing various emission control technologies and applying them. To assess vehicle renewal policies of bus companies, two exhaust after-treatment technologies are compared: the combination of a diesel particulate filter and an exhaust gas re-circulation system and the combination of a selective catalytic reduction and urea. On-board emission measurements were conducted under real-world driving conditions on a specific bus route in the city of Madrid.  相似文献   

7.
Numerous studies have established the link between the built environment and travel behavior. However, fewer studies have focused on environmental costs of travel (such as CO2 emissions) with respect to residential self-selection. Combined with the application of TIQS (Travel Intelligent Query System), this study develops a structural equations model (SEM) to examine the effects of the built environment and residential self-selection on commuting trips and their related CO2 emissions using data from 2015 in Guangzhou, China. The results demonstrate that the effect of residential self-selection also exists in Chinese cities, influencing residents’ choice of living environments and ultimately affecting their commute trip CO2 emissions. After controlling for the effect of residential self-selection, built environment variables still have significant effects on CO2 emissions from commuting although some are indirect effects that work through mediating variables (car ownership and commuting trip distance). Specifically, CO2 emissions are negatively affected by land-use mix, residential density, metro station density and road network density. Conversely, bus stop density, distance to city centers and parking availability near the workplace have positive effects on CO2 emissions. To promote low carbon travel, intervention on the built environment would be effective and necessary.  相似文献   

8.
In many countries passenger transport is significantly subsidized in a variety of ways for various reasons. The objective of this paper is to examine efficiency, distributional, environmental (CO2 emissions) and spatial effects of increasing different kinds of passenger transport subsidies discriminating between household types, travel purposes and travel modes. The effects are calculated by applying a numerical spatial general equilibrium approach calibrated to an average German metropolitan area. In extension to most studies focusing on only one kind of subsidy, we compare the effects of different transport subsidies within the same unified framework that allows to account for two features not yet considered simultaneously in studies on transport subsidies: endogenous labor supply and location decisions. Furthermore, congestion, travel mode choice, travel related CO2 emissions and institutional details regarding the tax system in Germany are taken into account. The results suggest that optimal subsidy levels are either small or even zero. While subsidizing public transport is welfare enhancing, subsidies to urban road traffic reduce aggregate urban welfare. Concerning the latter it is shown that making investments in urban road infrastructure capacity or reducing gasoline taxes may even be harmful to residents using predominantly automobile. In contrast, pure commuting subsidies hardly affect aggregate urban welfare, but distributional effects are substantial. All policies cause suburbanization of city residents and (except for subsidizing public transport) contribute to urban sprawl by raising the spatial imbalance of residences and jobs but the effect is relatively small. In addition, the policies induce a very differentiated pattern regarding distributional effects, benefits of landowners and environmental effects.  相似文献   

9.
In this paper, the waste heat of exhaust gases and jacket cooling water in marine diesel engines are analyzed to operate the absorption refrigeration unit (ARU). Thermo-economic and environmental analysis of the absorption refrigeration cycle operated with the two heat sources that use lithium bromide as an absorbent is carried out. The analysis is performed using Engineering Equation Solver (EES) software package where the thermodynamic properties of the steam and the LiBr-water mixtures are provided. The used EES code is verified by published experimental data. As a case study, high speed passenger vessel operating in the Red Sea area has been investigated. The results show that a considerable specific economic benefit could be achieved from ARU jacket cooling water operated over that gained from main engine exhaust gases. Environmentally, applying ARU machine during cruise will reduce the annual fuel consumption for the diesel generators by 156 ton with a reduction percentage of 23%. This will reduce the exhaust gas emissions by 6.3% from the applied main engine emissions. In addition, this will result in reducing NOx, SOx, and CO2 emissions with cost-effectiveness of 4.99 $/kg, 13.18 $/kg, and 0.08 $/kg, respectively.  相似文献   

10.
This paper examines the influence of compressed natural gas, liquefied petroleum gas and gasoline fuel on the exhaust emissions and the fuel consumption of a spark-ignition engine powered passenger car. The vehicle was driven according to the urban driving cycle and extra urban driving cycle speed profiles with the warmed-up engine. Cause and effect based analysis reveals potential for using different fuels to reduce vehicle emission and deficiencies associated with particular fuels. The highest tank to wheel efficiency and the lowest CO2 emission are observed with the natural gas fuelled vehicle, that also featured the highest total hydrocarbon emissions and high NOx emissions because of fast three way catalytic converter aging due the use of the compressed natural gas. Retrofitted liquefied petroleum gas fuel supply systems feature the greatest air-fuel ratio variations that result in the lowest TtW efficiency and in the highest NOx emissions of the liquefied gas fuelled vehicle.  相似文献   

11.
This paper investigates the well-to-wake energy consumption and greenhouse gas emissions of several key SOX abatement options in marine transportation, ranging from the manufacture of low sulfur fuels to equipping the vessel with suitable scrubber solutions. The findings suggest that a scrubber system, used with current heavy fuel oils, has the potential to reduce SOX emissions with lower well-to-wake energy consumption and greenhouse gas emissions than switching to production of low sulfur fuels at the refinery. A sensitivity analysis covering a series of system parameters shows that variations in the well-to-tank greenhouse gas emissions intensity and the energy efficiency of the main engine have the highest impacts in terms of well-to-wake emissions.  相似文献   

12.
This study measures urban form as indicators of metropolitan sprawl and explores its impact on commuting trips and NOx and CO2 emissions from road traffic in all metropolitan statistical areas (MSAs) and four groups’ MSAs separated by population in the continental United States. Encompassing all MSAs, the study adds the accessibility factor to four existing factors: density, land use mix, centeredness, and street connectivity. The study establishes multivariate regression models between urban form, commuting trips, and emissions from road traffic while controlling for socioeconomic conditions. The study shows that urban form index and five urban form factors have a statistically significant association with commuting trips, NOx and CO2 emissions from road traffic. In four MSA groups as determined by MSA population size, higher values of urban form factors (i.e., lower sprawl) are statistically associated with more walking commuters. On the other hand, higher values of urban form factors are associated with fewer commuting vehicles per household in large MSAs with the moderate effect, a lower average commuting drive time in medium and small MSAs, and more commuters using public transportation in medium and large MSAs. This study provides an urban form index covering all metropolitan areas in the continental United States by adding another urban form factor, and the findings show that urban form factors have different effects on mode choices, drive time, and emission from road traffic depending on the MSA population size.  相似文献   

13.
Climate change is one of the most critical environmental challenges faced in the world today. The transportation sector alone contributes to 22% of carbon emissions, of which 80% are contributed by road transportation. In this paper we investigate the potential private car greenhouse gas (GHG) emissions reduction and social welfare gains resulting from upgrading the bus service in the Greater Beirut Area. To this end, a stated preference (SP) survey on mode switching from private car to bus was conducted in this area and analyzed by means of a mixed logit model. We then used the model outputs to simulate aggregate switching behavior in the study area and the attendant welfare and environmental gains and private car GHG emissions reductions under various alternative scenarios of bus service upgrade. We recommend a bundle of realistic bus service improvements in the short term that will result in a reasonable shift to buses and measurable reduction in private car emissions. We argue that such improvements will need to be comprehensive in scope and include both improvements in bus level of service attributes (access/egress time, headway, in-vehicle travel time, and number of transfers) and the provision of amenities, including air-conditioning and Wi-Fi. Moreover, such a service needs to be cheaply priced to achieve reasonably high levels of switching behavior. With a comprehensively overhauled bus service, one would expect that bus ridership would increase for commuting purposes at first, and once the habit for it is formed, for travel purposes other than commuting, hence dramatically broadening the scope of private car GHG emissions reduction. This said, this study demonstrates the limits of focused sectorial policies in targeting and reducing private car GHG emissions, and highlights the need for combining behavioral interventions with other measures, most notably technological innovations, in order for the contribution of this sector to GHG emissions mitigation to be sizable.  相似文献   

14.
To identify key factors of transport CO2 emissions and determine effective policies for emission reductions in fast-growing cities, this study establishes transport CO2 emission models, quantifying the influences of polycentricity and satellite cities and re-examining the effects of per capita GDP and metro service. Based on the model results, we forecast future residents’ urban transport CO2 emissions under several scenarios of different urban and transport policies and new energy technologies. We find nonlinear quadratic growth relationship between commuting CO2 emissions and per capita GDP, and the elasticities of household and individual commuting CO2 emission to per capita GDP are 1.90% and 1.45%, respectively. Developing job-housing balanced satellite cities and self-contained polycentric city can greatly decrease emissions from high emitters and can contribute to about 51–82% of the emission reductions by 2050 compared with the scenario of business as usual (BAU). Promotion of electric vehicles, electric public buses, metros, and improvement of traditional energy efficiency contributes to about 48–57% of the emission reductions by 2050 compared with the BAU. When these policies and technologies are combined, about 90% of the emissions could be reduced by 2050 compared with the BAU, and the emissions will be about 1.2–4.9 times of the present. The findings suggest that fostering polycentric urban form and job-housing balanced satellite cities is the key step for future transport CO2 emission reductions. Metro network promotion, energy efficiency improvement, and new energy type applications can also be effective in emission reductions.  相似文献   

15.
In this paper we use simulation to analyze how flight routing network structure may change in different world regions, and how this might impact future traffic growth and emissions. We compare models of the domestic Indian and US air transportation systems, representing developing and mature air transportation systems respectively. We explicitly model passenger and airline decision-making, capturing passenger demand effects and airline operational responses, including airline network change. The models are applied to simulate air transportation system growth for networks of 49 airports in each country from 2005 to 2050. In India, the percentage of connecting passengers simulated decreases significantly (from over 40% in 2005 to under 10% in 2050), indicating that a shift in network structure towards increased point-to-point routing can be expected. In contrast, very little network change is simulated for the US airport set modeled. The simulated impact of network change on system CO2 emissions is very small, although in the case of India it could enable a large increase in demand, and therefore a significant reduction in emissions per passenger (by nearly 25%). NOx emissions at major hub airports are also estimated, and could initially reduce relative to a case in which network change is not simulated (by nearly 25% in the case of Mumbai in 2025). This effect, however, is significantly reduced by 2050 because of frequency competition effects. We conclude that network effects are important when estimating CO2 emissions per passenger and local air quality effects at hub airports in developing air transportation systems.  相似文献   

16.
To support the development of policies that reduce greenhouse gas (GHG) emissions by encouraging reduced travel and increased use of efficient transportation modes, it is necessary to better understand the explanatory effects that transportation, population density, and policy variables have on passenger travel related CO2 emissions. This study presents the development of a model of CO2 emissions per capita as a function of various explanatory variables using data on 146 urbanized areas in the United States. The model takes into account selectivity bias resulting from the fact that adopting policies aimed at reducing emissions in an urbanized area may be partly driven by the presence of environmental concerns in that area. The results indicate that population density, transit share, freeway lane-miles per capita, private vehicle occupancy, and average travel time have a statistically significant explanatory effect on passenger travel related CO2 emissions. In addition, the presence of automobile emissions inspection programs, which serves as a proxy indicator of other policies addressing environmental concerns and which could influence travelers in making environmentally favorable travel choices, markedly changes the manner in which transportation variables explain CO2 emission levels.  相似文献   

17.
Widespread adoption of plug-in electric vehicles (PEVs) may substantially reduce emissions of greenhouse gases while improving regional air quality and increasing energy security. However, outcomes depend heavily on the electricity generation process, power plant locations, and vehicle use decisions. This paper provides a clear methodology for predicting PEV emissions impacts by anticipating battery-charging decisions and power plant energy sources across Texas. Life-cycle impacts of vehicle production and use and Texans’ exposure to emissions are also computed and monetized. This study reveals to what extent PEVs are more environmentally friendly, for most pollutant species, than conventional passenger cars in Texas, after recognizing the emissions and energy impacts of battery provision and other manufacturing processes. Results indicate that PEVs on today’s grid can reduce GHGs, NOx, PM10, and CO in urban areas, but generate significantly higher emissions of SO2 than existing light-duty vehicles. Use of coal for electricity production is a primary concern for PEV growth, but the energy security benefits of electrified vehicle-miles endure. As conventional vehicle emissions rates improve, it appears that power grids must follow suit (by improving emissions technologies and/or shifting toward cleaner generation sources) to compete on an emissions-monetized basis with conventional vehicles in many locations. Moreover, while PEV pollution impacts may shift to more remote (power plant) locations, dense urban populations remain most strongly affected by local power plant emissions in many Texas locations.  相似文献   

18.
This paper presents a long-term investment planning model that co-optimizes infrastructure investments and operations across transportation and electric infrastructure systems for meeting the energy and transportation needs in the United States. The developed passenger transportation model is integrated within the modeling framework of a National Long-term Energy and Transportation Planning (NETPLAN) software, and the model is applied to investigate the impact of high-speed rail (HSR) investments on interstate passenger transportation portfolio, fuel and electricity consumption, and 40-year cost and carbon dioxide (CO2) emissions. The results show that there are feasible scenarios under which significant HSR penetration can be achieved, leading to reasonable decrease in national long-term CO2 emissions and costs. At higher HSR penetration of approximately 30% relative to no HSR in the portfolio promises a 40-year cost savings of up to $0.63 T, gasoline and jet fuel consumption reduction of up to 34% for interstate passenger trips, CO2 emissions reduction by about 0.8 billion short tons, and increased resilience against petroleum price shocks. Additionally, sensitivity studies with respect to light-duty vehicle mode share reveal that in order to realize such long-term cost and emission benefits, a change in the passenger mode choice is essential to ensure higher ridership for HSR.  相似文献   

19.
Discrepancies between real-world use of vehicles and certification cycles are a known issue. This paper presents an analysis of vehicle fuel consumption and pollutant emissions of the European certification cycle (NEDC) and the proposed worldwide harmonized light vehicles test procedure (WLTP) Class 3 cycle using data collected on-road. Sixteen light duty vehicles equipped with different propulsion technologies (spark-ignition engine, compression-ignition engine, parallel hybrid and full hybrid) were monitored using a portable emission measurement system under real-world driving conditions. The on-road data obtained, combined with the Vehicle Specific Power (VSP) methodology, was used to recreate the dynamic conditions of the NEDC and WLTP Class 3 cycle. Individual vehicle certification values of fuel consumption, CO2, HC and NOx emissions were compared with test cycle estimates based on road measurements. The fuel consumption calculated from on-road data is, on average, 23.9% and 16.3% higher than certification values for the recreated NEDC and WLTP Class 3 cycle, respectively. Estimated HC emissions are lower in gasoline and hybrid vehicles than certification values. Diesel vehicles present higher estimated NOx emissions compared to current certification values (322% and 326% higher for NOx and 244% and 247% higher for HC + NOx for NEDC and WLTP Class 3 cycle, respectively).  相似文献   

20.
In this study, we estimated the transportation-related emissions of nitrogen oxides (NOx) at an individual level for a sample of the Montreal population. Using linear regression, we quantified the associations between NOx emissions and selected individual attributes. We then investigated the relationship between individual emissions of NOx and exposure to nitrogen dioxide (NO2) concentrations derived from a land-use regression model. Factor analysis and clustering of land-uses were used to test the relationships between emissions and exposures in different Montreal areas. We observed that the emissions generated per individual are positively associated with vehicle ownership, gender, and employment status. We also noted that individuals who live in the suburbs or in peripheral areas generate higher emissions of NOx but are exposed to lower NO2 concentrations at home and throughout their daily activities. Finally, we observed that for most individuals, NO2 exposures based on daily activity locations were often slightly more elevated than NO2 concentrations at the home location. We estimated that between 20% and 45% of individuals experience a daily exposure that is largely different from the concentration at their home location. Our findings are relevant to the evaluation of equity in the generation of transport emissions and exposure to traffic-related air pollution. We also shed light on the effect of accounting for daily activities when estimating air pollution exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号