首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
建立了电控单点喷射稀燃天然气发动机的CARIMA模型,设计了广义预测自适应空燃比控制器。采用Matlab/Simulink建立了仿真模型,并进行了仿真对比。结果表明,与PID控制算法相比,基于GPC的自适应算法稳态性能优良,能明显改善空燃比瞬态跟随精度,对系统扰动具有更强的鲁棒性。  相似文献   

2.
基于发动机台架试验,建立并标定了进气道燃油喷射单缸汽油机一维仿真模型,探索了空燃比控制的新方法。依据经典控制理论,通过所建空燃比PID控制器与参数整定,实现了稳态空燃比控制。基于x-τ油膜模型,提出了其代数控制X-Y油膜方程,分析了进气道燃油传输过程对空燃比控制的影响;通过燃油阶跃扰动法,对X,Y参数进行识别,获得了X,Y参数MAP图,构建了离散化燃油动态补偿器,实现了空燃比在瞬态工况下的前馈控制。  相似文献   

3.
一种天然气发动机空燃比控制策略的研究   总被引:2,自引:0,他引:2  
提高电控天然气发动机的空燃比控制精度,是改善发动机经济性、动力性和降低尾气排放的关键环节。本文将模糊神经网络与PI控制技术相结合构成一种模糊神经解耦混合控制器。新控制器在控制过程中借助模糊神经网络的自学习算法实现控制参数的在线调整。将该算法应用于天然气发动机空燃比控制中,利用宽域空燃比传感技术,通过调整喷射脉宽控制发动机的空燃比,取得了较好的控制效果。  相似文献   

4.
为了解决进气管喷射汽油机在瞬态工况的空燃比控制问题,针对现有的发动机平均值模型,讨论了其中的油膜模型和油膜补偿器模型存在的问题和原因,建立了能直接用于微控制器的离散化油膜模型以及相应的油膜补偿器模型,用Matlab/Simulink对补偿效果进行仿真研究。结果表明,该模型能很好地补偿发动机瞬态工况的喷油量,把空燃比误差控制在允许的范围内,使发动机的动态响应更加迅速和平稳。  相似文献   

5.
在充分考虑外部干扰和系统模型不确定性的情况下,将混合灵敏度H∞设计引入多点喷射燃气发动机空燃比控制中,将发动机空燃比控制转化为H∞标准设计。仿真结果表明,H∞控制器具有良好的跟踪性、鲁棒稳定性和抗干扰能力。  相似文献   

6.
为实现瞬态空燃比精确控制,提出基于小波网络逆系统的复合预测控制策略。利用小波网络辨识空燃比系统逆模型,实现对瞬态空燃比系统中进气量的动态前馈补偿,并将该逆系统与原系统串联构成一伪线性系统,然后结合动态矩阵控制对系统的扰动、误差等进行修正,实现对非线性、时滞、时变的瞬态空燃比系统的预测控制;最后利用瞬态工况试验数据进行仿真,并与台架试验数据进行对比,结果表明小波网络逆模型能高精度地逼近空燃比瞬态过程,结合动态矩阵控制可提高系统的鲁棒性和抗干扰能力,该复合预测控制策略能实现、也适合发动机瞬态工况空燃比的精确控制。  相似文献   

7.
在Hendricks提出的汽油机平均值模型的基础上增加了空燃比模型、氧传感器模型和PI控制器,建立了系统仿真模型,并通过台架试验进行了验证.在系统仿真模型上模拟了氧传感器的响应延迟故障,研究其不同故障程度对发动机喷油规律和排放的影响.同时提出了一种基于Elman神经网络的虚拟氧传感器,根据Elman神经网络的基本理论构建了网络模型,以模型输出作为网络的训练样本,并对该网络模型进行了训练和测试.结果表明,该模型能较好地预测空燃比信号,并利用预测信号进行氧传感器故障状态下的补偿控制;基于Elman神经网络和虚拟氧传感器信号的喷油规律与正常状态下的喷油规律一致,能满足实际空燃比控制需求.  相似文献   

8.
为了提高天然气-汽油两用燃料发动机燃用天然气时的动力性,利用先进的发动机性能仿真软件AVLBOOST对于样机全负荷时中高转速范围内的部分工况点进行空燃比和点火提前角的模拟优化计算;确定了与之对应的最佳空燃比和点火提前角。在不改变发动机结构参数的情况下,通过优化空燃比和点火提前角可以实现在不降低经济性的前提下,提高天然气-汽油两用燃料发动机燃用天然气时的动力性。  相似文献   

9.
建立了电动汽车增程器系统的模块化控制仿真平台。将GT-Power中的接口模块与Simulink模块建立耦合模型,进一步通过Matlab/Simulink建立转速控制和空燃比控制模型,研究了增程发动机冷起动及稳定运行时转速和空燃比的控制策略,对比了传统 PID控制方法以及模糊 PID控制方法。结果表明,模糊 PID控制在目标转速以及空燃比的响应速度和误差方面均优于传统 PID 控制;稳定运行时,增程发动机转速保持在最佳工况点 3 000 r/min 附近,实现发动机高效节能。  相似文献   

10.
氧传感器在发动机运行过程中由于长期使用或环境恶劣等因素将导致其信号失真,为此提出模型算法替代氧传感器实物的思路,根据模型设计理念,设计一种实现空燃比精确控制的控制器。在Matlab/Simulink环境下,搭建空燃比控制器算法模型,主要包括氧传感器信号计算模块、模式调度模块和PI控制器模块。将由空燃比算法模型所得空燃比输入氧传感器模型,得到氧传感器信号值,将该信号值反馈到PI控制器模块中,进行喷油量修正,使空燃比控制在14.7附近。试验结果表明,该控制系统在没有使用氧传感器的条件下可将空燃比精确控制在14.31~15.01范围内。与装有氧传感器的电控原机相比,排放性能相似。  相似文献   

11.
A Traction Control System (TCS) is used to avoid excessive wheel-slip via adjusting active brake pressure and engine torque when vehicle starts fiercely. The split friction and slope of the road are complicated conditions for TCS. Once operated under these conditions, the traction control performance of the vehicle might be deteriorated and the vehicle might lack drive capability or lose lateral stability, if the regulated active brake pressure and engine torque can’t match up promptly and effectively. In order to solve this problem, a novel coordinated algorithm for TCS is brought forward. Firstly, two brake controllers, including a basic controller based on the friction difference between the two drive wheels for compensating this difference and a fuzzy logic controller for assisting the engine torque controller to adjust wheel-slip, are presented for brake control together. And then two engine torque controllers, containing a basic PID controller for wheel-slip control and a fuzzy logic controller for compensating torque needed by the road slope, are built for engine torque control together. Due to the simultaneous and accurate coordination of the two regulated variables the controlled vehicle can start smoothly. The vehicle test and simulation results on various road conditions have testified that the proposed method is effective and robust.  相似文献   

12.
轻度混合动力系统典型瞬态过程仿真分析   总被引:4,自引:3,他引:4  
简要介绍了基于一体化起动机/发电机(Integrated Starter/Alternator-ISA)的轻度混合动力系统的结构及主要功能,着重阐述了单点喷射汽油机和ISA及控制器的建模过程,并对轻度混合动力系统的自动起动和功率辅助两个瞬态过程进行了仿真分析。  相似文献   

13.
Gaussian Process Regression (GPR) provides emerging modeling opportunities for diesel engine control. Recent serial production hardwares increase online calculation capabilities of the engine control units. This paper presents a GPR modeling for feedforward part of the diesel engine airpath controller. A variable geotmetry turbine (VGT) and an exhaust gas recirculation (EGR) valve outer loop controllers are developed. The GPR feedforward models are trained with a series of mapping data with physically related inputs instead of speed and torque utilized in conventional control schemes. A physical model-free and calibratable controller structure is proposed for hardware flexibility. Furthermore, a discrete time sliding mode controller (SMC) is utilized as a feedback controller. Feedforward modeling and the subsequent airpath controller (SMC+GPR) are implemented on the physical diesel engine model and the performance of the proposed controller is compared with a conventional PID controller with table based feedforward.  相似文献   

14.
This paper presents a new multi-vehicle simulator for platoon simulation. The main new feature of the developed simulator is a network structure for the real-time simulation of multiple vehicles, each with a detailed powertrain and engine model. It has a small initial delay, which is determined by the number of connected PCs, but the actual simulation is performed and displayed in real-time after this initial and one-time delay. Several longitudinal controllers, including a PID controller with gain scheduling, an adaptive controller, and a fuzzy controller, are also implemented in the simulator. Various system parameters can be modified interactively in the simulator screen, which is very useful for simulating a platoon of heterogeneous vehicles, in which vehicles with different dynamics and different longitudinal controllers may be involved. The simulator provides an excellent tool to develop vehicle longitudinal controllers and to study platoon behaviors. The developed simulator is also effective in testing the effects of nonlinearities neglected in the controller design phase, such as actuator delays and gear shifting schedule.  相似文献   

15.
In this article, a new drivetrain configuration of a parallel hybrid electric vehicle is considered and a novel model-based control design strategy is given. In particular, the control design covers the speed synchronisation task during a restart of the internal combustion engine. The proposed multivariable synchronisation strategy is based on feedforward and decoupled feedback controllers. The performance and the robustness properties of the closed-loop system are illustrated by nonlinear simulation results.  相似文献   

16.
This paper presents a new multi-vehicle simulator for platoon simulation. The main new feature of the developed simulator is a network structure for the real-time simulation of multiple vehicles, each with a detailed powertrain and engine model. It has a small initial delay, which is determined by the number of connected PCs, but the actual simulation is performed and displayed in real-time after this initial and one-time delay. Several longitudinal controllers, including a PID controller with gain scheduling, an adaptive controller, and a fuzzy controller, are also implemented in the simulator. Various system parameters can be modified interactively in the simulator screen, which is very useful for simulating a platoon of heterogeneous vehicles, in which vehicles with different dynamics and different longitudinal controllers may be involved. The simulator provides an excellent tool to develop vehicle longitudinal controllers and to study platoon behaviors. The developed simulator is also effective in testing the effects of nonlinearities neglected in the controller design phase, such as actuator delays and gear shifting schedule.  相似文献   

17.
When a vehicle is subjected to acceleration or disturbances, the elasticity of the various components in the driveline may cause torsional vibrations which can result in an oscillating vehicle speed. These driveline oscillations are also known as shuffle and are low frequency oscillations corresponding to the first resonance frequency of the driveline. The oscillations give rise to, apart from material stress, noticeable lessened driveability. In this work, different ways to actively damp the oscillations are investigated. The idea is to use the engine as an actuator in order to achieve active damping, so-called active engine control. Different linear controllers are investigated and evaluated. The paper includes driveline modelling, control design and verifications by simulations, and tests in real vehicle. Implementation issues such as limited amount of available engine torque and parameter identifications are also discussed. A Linear-Quadratic-Gaussion (LQG) controller has been implemented and tested on a heavy duty truck. Results show that the LQG controller works well and active damping is achieved.  相似文献   

18.
Powertrain Control for Active Damping of Driveline Oscillations   总被引:2,自引:0,他引:2  
When a vehicle is subjected to acceleration or disturbances, the elasticity of the various components in the driveline may cause torsional vibrations which can result in an oscillating vehicle speed. These driveline oscillations are also known as shuffle and are low frequency oscillations corresponding to the first resonance frequency of the driveline. The oscillations give rise to, apart from material stress, noticeable lessened driveability. In this work, different ways to actively damp the oscillations are investigated. The idea is to use the engine as an actuator in order to achieve active damping, so-called active engine control. Different linear controllers are investigated and evaluated. The paper includes driveline modelling, control design and verifications by simulations, and tests in real vehicle. Implementation issues such as limited amount of available engine torque and parameter identifications are also discussed. A Linear-Quadratic-Gaussion (LQG) controller has been implemented and tested on a heavy duty truck. Results show that the LQG controller works well and active damping is achieved.  相似文献   

19.
Vehicle traction control system has been developed to enhance the traction capability and the direction stability of the driving wheels through the tyre slip ratio regulation. Under normal situations, if the tyre slip ratio exceeds a certain threshold, the slip ratio of the driving wheel is regulated by the coupled interaction of the engine torque and the active brake pressure. In order to obtain the best driving performance on a road under complicated friction conditions, the driving torque and the active brake pressure, need to be decoupled and adjusted to avoid penalisation of each other. In this paper, a coordinated cascade control method with two sliding-mode variable structure controllers is presented. In this control method, the driving wheel slip ratio is regulated by adjusting the engine torque and the wheel brake pressure. Through the sliding-mode controller, the engine torque is tuned to achieve the maximum driving acceleration and then the active brake pressure is applied to the slipped wheel for further modification of the wheel slip ratio. The advantage of this control method is that through proper regulation, the conflict between the two control inputs could be avoided. Finally, the simulation results validate the effectiveness of the proposed method.  相似文献   

20.
In this paper, analytical characterization of the magneto-rheological (MR) damper is done using a new modified algebraic model. Algebraic model is also more preferable because of its low computational expenses compared to differential Bouc-Wen’s model which is highly computationally demanding. This model along with the obtained model parameters is used as a semi-active suspension device in a quarter car model and the stationary response of the vehicle traversing on a rough road is obtained. The control part consists of two nested controllers. One of them is the system controller which generates the desired damping force and the other is the damper controller which adjusts the voltage level to MR damper so as to track the desired damping force. For the system controller a model reference skyhook Sliding Mode Controller (SMC) is used and for the damper controller a continuous state algorithm is built to determine the input voltage so as to gain the desired damping force. The analytical model is subsequently used in the quarter car vehicle model and the vehicular responses are studied. A simulation study is performed to prove the effectiveness and robustness of the semi-active control approach. Results show that the semi-active controller can achieve compatible performance as that of active suspension controller except for a little deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号