首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究极值温度作用模式下高墩-梁轨体系的温度变形,需要获得混凝土高墩在日照作用下产生极值温度分布规律。基于昌赣铁路客运专线某高墩桥梁一年的温度监测数据,采用广义帕累托模型和时间序列加法模型分别对高墩100年重现期的极值温差分量和均匀温度分量进行了估计,并采用负指数函数对沿壁厚方向的温差进行拟合,获得了高墩极值温度组合。然后,采用热-力耦合的三维有限元模型计算了极值温度组合下的温度变形。结果表明:桥墩的地理位置东西侧温差为23.62℃,南北侧温差为6.91℃,且沿壁厚方向满足负指数函数分布时,为温度作用最不利情况;年均匀温度方程可获得每日均匀温度取值,并得到100年重现期内最大均匀温度可达51.2℃,最低为-9.8℃;通过极值温差和均匀温度分量的组合,可计算高墩在极值温度作用下的温度变形,为高速铁路桥梁设计和运营期内温度变形计算提供参考。  相似文献   

2.
高墩大跨桥梁桥墩升温对桥上无缝线路的影响研究   总被引:4,自引:4,他引:0  
高墩大跨桥梁桥墩整体在太阳辐射下升温,会使桥墩顶部产生竖向位移。对桥墩升温产生竖向位移对无缝线路的影响这一问题,使用有限元软件建立线-桥-墩一体化模型,分析高墩升温条件下桥上无缝线路的受力及变形。计算结果表明:桥墩的升温对桥墩受力影响较小,桥墩温度变化引起的线路竖向不平顺主要是长波不平顺。建议高墩大跨桥梁不考虑桥墩整体温度变化对线路受力的影响,但要对桥墩变形引起的竖向不平顺进行检算,以满足规范对桥上无缝线路验收的需要。  相似文献   

3.
桥梁在温度荷载作用下会发生上拱或下沉,带动钢轨变形,当相邻墩高差较大时,甚至引起轨道几何形位超限。本文以合福(合肥—福州)高速铁路10×32 m简支箱梁桥为研究对象,基于隔枕校核的方法,针对导致轨道高低和方向不平顺的几种常见温度荷载及组合,提出了32 m高墩简支箱梁桥相邻墩高差合理取值范围的拟合计算公式。建议分别考虑桥墩升(降)温、桥墩升温耦合桥梁竖向正温差、桥墩降温耦合桥梁竖向负温差以及桥墩横向温差4种计算工况,并均采用长波不平顺校核方法,结合不同地区温度分布特征,取上述4种工况计算确定的相邻墩高差最小值作为限值。  相似文献   

4.
研究目的:桥梁和桥墩在温度效应作用下会发生翘曲而引起轨面几何形态的变化。由于桥台受温度作用变形较小,当与桥台相邻桥墩(首墩)高度较大时就可能引起轨道几何形位超限。本文以高速铁路6×32 m简支箱梁桥为研究对象,基于隔枕校核的方法,针对桥梁结构温度效应引起的基础变形形式,提出高速铁路32 m简支箱梁首墩高度合理取值范围的拟合计算公式。研究结论:(1)当首墩超过某一限值时,桥梁和桥墩在温度作用下将引起轨道高低和方向的几何形位超限,桥梁设计时不能忽视桥墩、桥梁温度效应引起的不平顺;(2)满足不平顺校核值的首墩高度与温度的关系式均可由H=a/ΔTb+c拟合;建议分别考虑桥墩升温耦合桥梁竖向正温差、桥墩降温耦合桥梁竖向负温差以及桥墩横向温差三种计算工况,并均以中波不平顺校核方法(隔8枕校核值)确定首墩高度限值;(3)建议将首墩高度限值纳入高铁桥梁设计规范;(4)该研究成果对于指导桥墩设计、施工,提高高速铁路桥上无缝线路的平顺性具有参考价值。  相似文献   

5.
高墩水平温差对连续刚构桥上无缝线路的影响   总被引:1,自引:1,他引:0  
为研究高墩水平温差对桥上无缝线路的影响,选取某高墩大跨连续刚构桥工程实例,基于梁轨相互作用原理,建立线桥墩一体化有限元模型,分析在水平纵向和横向温差作用下高墩大跨桥上无缝线路受力变形情况。结果表明:高墩纵向温差对连续刚构桥上无缝线路纵向受力影响较大,随着桥墩纵向温差的增大,桥上无缝线路受力逐渐增大;桥墩横向温差影响桥上无缝线路平顺性,当桥墩横向温差超过一定的限值时,连续刚构桥上无缝线路会出现长波不平顺超限;总结以上分析结果,建议在连续刚构桥上无缝线路设计检算中考虑高墩在水平温差作用下对桥上无缝线路的影响。  相似文献   

6.
林迟  欧进萍 《铁道学报》2011,33(1):94-100
目前我国铁路、公路桥梁规范均未考虑南北气候差异对桥梁温度作用的影响,对降温温度梯度曲线的规定也较粗略。针对上述不足,结合哈尔滨40年(1963~2002年)及广州10年(1997~2006年)的气象资料,通过分析气象资料和建立有限元模型,对大型桥梁空心构件日照升温和寒流降温梯度温度参数进行分析研究。对日照升温温度作用,为区分不同地区温度作用的差异,提出其温差极值的预测公式并加以简化,可为建立温度作用分区提供参考依据;对寒流降温温度作用,定性分析壁厚对温差极值和温度梯度曲线的影响,并提出温差极值预测公式。结果表明:哈尔滨地区的日照升温温差极值为35℃,广州地区为20℃,两地温度作用相差较大,有必要考虑气候的影响并建立温度作用分区;寒流降温温度作用对构件的影响深度在0.6 m左右,随着壁厚的增加温差曲线指数相应减小。  相似文献   

7.
道岔是铁路线路的薄弱环节,是影响行车平稳性与安全性的关键设备。随着我国西南山区铁路的建设,不可避免出现大量高墩大跨桥梁,温度作用下相邻高墩差将引起轨道不平顺,从而影响桥上无砟道岔的动力特性。为研究温度作用下相邻桥墩高度差对连续梁上道岔动力特性的影响规律,以某(40+56+40) m变宽连续梁上18号道岔为研究对象,采用UM软件和ANSYS联合仿真,建立列车-道岔-桥梁耦合系统动力学模型,研究温度作用下桥墩变形引起的轨道变形对道岔动力特性的影响规律。结果表明:桥墩升降温对钢轨竖向变形影响较大,当相邻桥墩高度差为29.5 m,桥墩温度变化为30℃时,钢轨最大竖向变形为20.97 mm,出现在桥墩最高处;桥墩高差仅对车体垂向振动加速度有影响,对轮轨力、车辆安全性、平稳性和道岔变形基本无影响;桥墩升温30℃时,高速列车以385 km/h速度直向通过道岔时车体振动加速度从0.05 m/s2增大至0.13 m/s2,高速列车以90 km/h速度侧向通过道岔时加速度从0.04 m/s2增大至0.10 m/s2;桥...  相似文献   

8.
温差引起的墩顶位移是设计中一项重要指标,为填补现行2017年版桥规墩顶温差位移无可用计算公式的空缺,以满足规范提出的验算墩顶位移必须考虑0.5倍温差的要求,基于力学平衡和几何关系,通过严密的理论推导,得到了实体桥墩在线性和非线性温差温度场作用下各自的墩顶位移计算公式.通过位移等效得到等效线性温度可取5℃,并将等效线性温...  相似文献   

9.
为研究高速铁路无砟轨道结构温度与大气温度关系,基于2年实测数据,采用时间序列差分法分离日照波动温度,得出我国华东地区桥上CRTSⅡ型轨道结构遮阴温度时程曲线,通过统计分析提出轨道年均匀温度谱概念,并用傅里叶级数进行拟合,研究轨道结构均匀温度与大气温度关系函数,并通过50年历史气温数据进行预测。研究表明,轨道结构各部遮阴温度相近,可由统一的年均匀温度谱系傅里叶级数表示,其年均温为21. 73℃,年温变幅12. 27℃,周期366 d。轨道结构温度-大气温度关系可用线性函数表示,与欧洲规范较为相似,但整体略大,其中高温偏大1. 07℃,低温偏大2. 32℃。重现期50、100、150年和300年的轨道最大、最小均匀温度代表值分别为42. 42、44. 36、45. 42、47. 09℃和4. 45、0. 7、-1. 39、-5. 21℃。  相似文献   

10.
高墩大跨桥梁墩身高,柔性大,在温度梯度的作用下桥墩容易产生较大的变形,这种变形传递到梁体,从而进一步作用在轨道结构上,使其产生不平顺,影响行车质量,而列车在线路上高速行驶时对线路平顺性要求较高。针对这一现实情况,文章通过大型有限元软件,以某高墩大跨连续梁桥为例,建立桥墩-梁体-轨道结构模型,分析钢轨在桥墩整体升温和纵横向温度梯度作用下产生的位移,并参照国内现有的评判标准,计算钢轨不平顺值,分析不同的温度荷载对轨道结构平顺性的影响,最终得出如下结论:桥墩整体温升会影响无缝线路的竖向平顺性;桥墩横向温度梯度会对无缝线路轨向平顺性影响较大;纵向温度梯度对线路平顺性影响不大。  相似文献   

11.
温度梯度对高墩桥上无缝线路的影响分析   总被引:3,自引:0,他引:3  
为研究温度对高墩大跨桥上无缝线路的影响,基于梁轨相互作用原理,利用有限元方法,建立线—桥—墩一体化模型,计算高墩大跨桥梁桥墩受到纵向和横向温度梯度荷载时钢轨的纵向力和梁轨相对位移。计算结果表明:桥墩受到纵向温度梯度荷载时钢轨受到的最大压力为523.09 kN,与最大附加伸缩力值584.95 kN接近,纵向温度荷载对桥上无缝线路的影响近似等同于附加伸缩力,在设计桥上无缝线路时必须予以考虑;横向温度梯度荷载对桥梁本身的影响较小,在设计中可以通过安全系数予以控制,在设计中可忽略。分析温度荷载对高墩桥上无缝线路的影响,对于桥梁的安全设计和保证桥上无缝线路的稳定状态均具有一定的指导意义。  相似文献   

12.
基于东南地区某高速铁路桥上曲线段CRTSⅡ型板式无砟轨道三年的实测温度数据,采用时间序列差分法将温度时程曲线趋势变化和短周期变化进行分解,得到轨道结构的均匀温度时程,并用傅里叶级数进行拟合,提出轨道结构均匀温度时程拟合表达式;考虑到常用的概率模型求取梯度极值忽略了尾部数据的影响,导致不同重现期梯度代表值计算存在一定误差...  相似文献   

13.
西南高原地区与内地不同,具有海拔高、太阳辐射强、昼夜温差大等的特点,该地区无砟轨道温度场设计值尚无定论。在西南高原某铁路附近建立了双块式无砟轨道温度场试验平台,对气温及道床板温度场进行了为期11个月的现场实测,通过现场试验及统计分析的方法对道床板温度场及竖向温度梯度进行研究。利用GEV模型,使用极大似然估计法对16 294组监测数据进行极值分析,确定道床板温度/温度梯度极值分布模型,提出具有一定超越概率的道床板温度及竖向温度梯度代表值。研究结果表明:1)道床板最高温度为45.61℃,最低温度为-13.52℃。由于热交换条件的不同,道床板中间截面最高平均温度比边缘截面高2.1℃,道床板中间截面最低平均温度比边缘截面低1.68℃;2)道床板最大正温度梯度为88.88℃/m,最大负温度梯度为-49.90℃/m;3)道床板温度和温度梯度均服从Weibull分布,当超越概率为0.01时,道床板最高温度代表值为44.85℃,最低温度代表值为-15.84℃,最大竖向正温度梯度代表值为87.13℃/m,最大竖向负温度梯度代表值为-38.63℃/m。研究成果可为西南高原铁路无砟轨道温度场的设计取值提供参...  相似文献   

14.
研究目的:基于有限元方法与梁轨相互作用原理,建立能够分析坡道上无砟轨道桥梁变形对扣件受力影响的平面模型,分析桥梁坡度、墩顶纵向水平位移等因素对扣件受力的影响,提出在考虑桥梁收缩徐变、基础沉降、桥墩纵向温差及列车荷载等条件下32 m简支梁适应的坡度,从而为桥梁坡度选择提供理论指导。研究结论:(1)桥梁坡度以及墩顶纵向水平位移的改变均会引起扣件受力,并且扣件所受上拔力最大值随着桥梁坡度、墩顶纵向水平位移的增加近似呈线性增大;(2)对于梁端悬出0.55 m的32 m简支梁而言,当桥墩高度为20 m时,由扣件上拔力不超限确定的最大坡度值为29‰,当桥墩高度为40 m时最大坡度值为20‰;(3)当桥墩纵向水平刚度增加、梁缝附近铺设过渡板或采用特殊扣件时,可以适当增加桥梁的坡度限值;(4)基于扣件受力确定的桥梁坡度限值可为今后线路选线设计及桥梁坡度设置提供借鉴和参考。  相似文献   

15.
桥墩温差荷载作用下桥上无缝线路钢轨附加力研究   总被引:3,自引:1,他引:2  
根据梁轨相互作用原理,建立了"轨-梁-墩-体化"有限元模型,采用单位荷载法计算了桥墩温差荷载引起的墩顶纵向位移,计算了桥墩温差引起的桥上无缝线路钢轨附加力.桥墩高度对桥墩温差引起的钢轨附加力影响比较敏感,当桥墩较高时,桥墩温差引起的钢轨附加力不能忽略,建议在高墩桥上设计无缝线路时,应考虑桥墩温差引起的钢轨附加力,并与其他钢轨附加力进行荷载组合,检算钢轨强度和无缝线路稳定性.  相似文献   

16.
针对曲线梁桥在温度荷载作用下产生竖向变形、切向位移和横向位移,且横向位移严重影响曲线梁桥安全性与耐久性的问题,为确定曲线梁桥日温差的分布规律,用光纤传感器对一座沥青铺装的预应力混凝土在役曲线梁桥进行1 a的温度数据实时监测,并采用聚类分析、参数估计和假设检验等方法对曲线梁桥温差代表值进行分析计算。研究结果表明:沥青铺装预应力混凝土在役曲线梁桥竖向和横向日最大正温差服从两参数的Weibull分布,竖向日最大正温差标准值为21.7℃,频遇值为21.4℃,准永久值为20.3℃。横向日最大温差标准值为14.1℃,频遇值为13.7℃,准永久值为12.6℃,横向温差标准值占竖向的64.9%,对中原区域曲线梁桥设计计算中温度的取值提供了依据。  相似文献   

17.
桥墩温差荷载引起的桥上无缝线路钢轨附加力   总被引:5,自引:0,他引:5  
采用单位荷载法计算桥墩温差荷载引起的墩顶纵向位移。根据梁轨相互作用原理,建立“轨—梁—墩”有限元模型,计算桥墩温差引起的桥上无缝线路钢轨附加力,研究桥墩温差引起的钢轨附加力的分布规律及其影响因素。研究表明:多跨简支梁桥墩温差引起的钢轨附加力的最大压力出现在右桥台处,最大拉力出现在靠近左桥台的边墩处,离桥台越远,钢轨附加力越小;随着墩高的增加,桥墩温差引起的钢轨附加力增大,建议在设计高墩桥上无缝线路时,应考虑桥墩温差引起的钢轨附加力,并与其他钢轨附加力叠加检算钢轨强度和无缝线路稳定性;桥墩温差引起的钢轨附加力,随着桥墩纵向水平线刚度的增加先快速增大,到一定程度后变缓;桥梁跨度对桥墩温差引起的钢轨附加力影响很小;钢轨附加力随着简支梁跨数的增加而增大,但逐渐变缓,当简支梁跨数超过18跨以后,钢轨附加力不再增长。  相似文献   

18.
高墩大跨刚构桥桥墩若出现工后沉降,桥墩纵向和横向的沉降值存在差异,将导致桥墩出现纵横向偏转。针对桥墩偏转对无缝线路的影响,结合某一高墩大跨刚构桥上无缝线路,利用有限元方法,建立空间线—桥—墩—体化模型,分析桥墩纵向、横向偏转对桥上无缝线路的影响。计算结果表明:随着桥墩纵向偏转角度的增加,钢轨中产生的附加力近似呈线性增加;当桥墩纵向偏转与温度荷载耦合时,桥墩纵向偏转所引起的钢轨纵向力变化幅度不大。桥墩的横向偏转主要引起轨道长波不平顺,钢轨位移及不平顺随着桥墩的横向偏转角的增加而增加,并且当桥墩横向偏转角较大时,整个桥上无缝线路会出现多处不平顺超限,超限位置主要分布在左、右侧桥台及两个梁体接缝处。  相似文献   

19.
从设计、现状情况等方面进行对比,初步了解梁体、桥墩的横向刚度变化情况;结合桥墩实测横向自振频率与不同埋深情况下的《检规》通常值比较分析,指出了中、高墩周围土体约束情况对桥墩横向刚度的影响及桥墩可能存在的病害;根据试验资料综合分析,进一步明确了墩、梁技术状态及整治对策.期望为中、高墩桥梁的病害诊断及整治提供参考.  相似文献   

20.
研究目的:铁路简支梁桥上部结构纵向力通过梁体传递和分配到各墩,墩高较大时,墩顶变形较大,在遇到较大地震力作用时,墩顶变形过大会引起落梁甚至桥梁倒塌等严重灾害。因此,针对高墩谷架桥研发了一种既能传递拉力又能传递压力的连梁装置——活塞式拉压限制器,以期减小高墩的水平受力,从而控制墩顶的变形。研究结论:(1)活塞式拉压限制器将梁体在纵向上连接起来,并将纵向力传递至端部刚性桥台或中间刚性墩固定点,起到调节桥梁刚度,控制墩梁相对变形的作用;(2)活塞式拉压限制器的应用对桥墩及桥台均有一定的减震作用,且对高墩的减震效果更明显;(3)活塞式拉压限制器有良好的地震调节作用,对高墩简支梁桥桥墩的内力调节作用与其屈服刚度、游间量、墩高等因素密切相关;(4)活塞式拉压限制器的应用可使得桥梁设计不增加桥墩尺寸,并使各墩尺寸一致;(5)活塞式拉压限制器的研发及应用将会加速耗能型连梁装置及防落梁系统的实用化进程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号