首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《JSAE Review》1996,17(4):401-404
A study of a direct fuel injection 2-stroke engine as a new generation power unit was performed and concluded as follows.
  • 1.(1) A comparison of fuel injection system candidates was made and the one-fluid high-pressure type was chosen.
  • 2.(2) Adopting the high-pressure fuel system to a single-cylinder engine, stratified charge combustion was realized using the late injection.
  • 3.(3) It was found that homogeneous charge combustion using the early injection would enable high power output.
  • 4.(4) The “2-zone combustion” was also achieved by injecting the fuel twice within one cycle.
  相似文献   

2.
《JSAE Review》1995,16(3):294-296
  • 1.(1) We have bee successful in establishing a conversion formula that can establish the random vibration test conditions based on the measured values of the peak accumulated.
  • 2.(2)We learned that, not only the main components of engine vibrations, but other components are also important in the phenomena of contact wear, from the fact that the evaluation tests based on random vibrations could reproduce contact wear far better that the sime wave sweep test.
  相似文献   

3.
《JSAE Review》1996,17(2):213-217
We have developed a new decompression brake, which incorporates an original operation mechanism, in answer to user demands for more powerful brake performance. This decompression brake improves braking power by more than 50% compared with a conventional exhaust brake, when operated in tandem with an exhaust brake. The decompression brake contributes to safe driving, to alleviate driver fatigue, and to prolong brake lining life.This paper reports on the following subjects:
  • 1.(1)The principle and development of the original operation system.
  • 2.(2) Test results of performance and load analysis.
  相似文献   

4.
《JSAE Review》1994,15(2):101-107
In the present study a new test method is investigated to measure the total friction loss of engines over the whole range of speed and load. It is based on the idea that the friction loss close to the true one of fired and braked engines can be measured by the run-out method because the temperature mainly influencing the friction loss is almost stable for the short run-out test duration. From the test results and the comparison with those measured by other conventional test methods, the following becomes evident:
  • 1.(1) The total friction mean effective pressure slightly increases as the revolution speed becomes high, but it decreases as either the load or the cooling water temperature becomes high.
  • 2.(2) The total friction mean effective pressure measured by the present method is smaller than that measured by the run-out method, the motoring method or Willans-line method, but it is larger than that measured by the indicated pressure diagram method.
  相似文献   

5.
6.
SUMMARY

A numerical simulation model of the roller test stand located at Munich and loaded by a bogie is discussed including its technical structure, the governing physical equations of motion and the structure of the simulation program.

Both, the set up of the mathematical and numerical models time and the computation time of simulation runs have been considerably reduced (by a factor of 20) using formula manipulation programs.

Simulation results concerning the
  • starting behaviour of a bogie,

  • stationary limit cycle behaviour of bogies with ideal and wear profile and

  • influence of gauge changes and spring/damper modifications on limit cycle behaviour of a bogie are presented, some of which are compared with experimental results gained from test facility measurements. The simulation results are in good agreement with the experimental results and provide an experimental verification of the roller rig simulation model presented.

  相似文献   

7.

Objective

With widely usage of restraint system, fatal injuries to occupants have been largely limited while non-fatal lower extremity injuries have not been effectively improved. The present study aims to investigate occupant lower extremity injuries under realistic impact environments.

Methods

A biofidelic lower extremity model, a dummy model and a car cab model were combined to set up a realistic impact environment. Three typical frontal impact groups were simulated. Occupant global lower kinematics, long bone axial force and bending moment were presented to in-depth investigate lower extremity injury mechanism and tolerance.

Results

Various overlap frontal impacts cause totally different lower extremity kinematics in the combination of structural invasion and restraint system effects. The femur fracture occurred at a small axial force of 7.57 kN combing a substantial bending moment peak of 172 Nm. Ankle joint injuries were found in 100 % and 25 % overlap impacts that present large tibial axial force and joint rotation angle.

Conclusions

Overall results indicate that a coupling threshold of femur axial force and bending moment is of rationality to predict global femur fracture. The ankle joint injury occurrence is significantly related to the coupling effects of tibia axial force and excessive self-kinematics.
  相似文献   

8.
Wheel–rail contact calculations are essential for simulating railway vehicle dynamic behavior. Currently, these simulations usually use the Hertz contact theory to calculate normal forces and Kalker's ‘FASTSIM’ program to evaluate tangential stresses. Since 1996, new methods called semi-Hertzian have appeared: 5 Kik, W. and Piotrowski, J. A fast approximate method to calculate normal load at contact between wheel and rail and creep forces during rolling. Paper presented at the 2nd Mini-conference on Contact Mechanics and Wear of Rail/Wheel Systems. July29–31, Budapest.  [Google Scholar] 7 Ayasse, J. B., Chollet, H. and Maupu, J. L. 2000. Paramètres caractéristiques du contact roue-rail. Rapport de Recherche INRETS n225, ISSN 0768–9756 (in French) [Google Scholar] (STRIPES). These methods attempt to estimate the non-elliptical contact patches with a discrete extension of the Hertz theory. As a continuation of 2 Ayasse, J. B and Chollet, H. 2005. Determination of the wheel–rail contact patch in semi-Hertzian conditions. Vehicle System Dynamics, 43(3) [Google Scholar], a validation of the STRIPES method for normal problem computing on three test cases is proposed in this article. The test cases do not fulfill the hypothesis required for the Hertz theory. Then, the Kalker's FASTSIM algorithm is adapted to STRIPES patch calculus to perform tangential forces computation. This adaptation is assessed using Kalker's CONTACT algorithm.  相似文献   

9.
This paper presents a new active steering control system based on driving phase diagram (β fr ?δ f diagram). In order to make state variables to follow those of nominal vehicle model that was developed under no consideration of disturbance, Quadratic Programming Problem (QPP) is formulated, where time varying objective function minimizes the differences between nominal and actual parameters. The steering characteristic in active steering control system changes when the vehicle faces disturbance such as crosswind and flat tire, and driver tries to counteract it after recognizing the change. The proposed method defines a stability region on β fr ?δ f diagram. In order to make β fr and δ f remain in the stability region, a new model predictive controller is proposed. While conventional controllers are restrictive to satisfy the β fr ?δ f diagram based stability condition, the proposed controller ensures solution space and also plays a direct role to minimize the evaluation function in the constrained optimal control problem.  相似文献   

10.
In-cylinder charge density at top dead center is an important parameter of diesel engines and is influenced by intake pressure, intake temperature, and compression ratio. The effects of charge density on fuel spray, combustion process, and emissions were investigated by using a constant volume bomb and a heavy-duty diesel engine. Spray development resistance increased with the increase of the charge density in the constant volume bomb. It was found that short spray penetration was accompanied by a large spray cone angle in the former stage with high charge density. However, the equivalence ratio was lowered and the degree of homogeneity of the mixture was increased in the later stage owing to the rapid interaction of fuel and gas at a high mixing rate. Combining the first law of thermodynamics and the second law of thermodynamics for analysis, as the charge density increased, the gross indicated thermal efficiency (ITEg) was improved. However, pumping loss had to be considered with higher charge density. Under this condition, the brake thermal efficiency (BTE) trend was increased initially and decreased subsequently. Under high-load operation (1200 r/min BMEP, 2.0 MPa), the minimum charge density value of 44.8 kg/m3 was found to be reasonable. This charge density was suitable for combustion and brought about minimum exhaust energy and trade-off emissions. Moreover, by analyzing two operation conditions in terms of the maximum BTE with the Miller and the conventional cycles, compression temperature and combustion temperature were reduced in the Miller cycle with the charge density 44.8 kg/m3. A high Cp/Cv could improve the cylinder exergy/power conversion process by its positive effect of increasing the specific heat ratio. Owing to the interaction between a high Cp/Cv and exergy loss to heat transfer, the condition with the minimal charge density could produce more piston work.  相似文献   

11.
为解决EC1000阴极电泳漆膜容易产生缩孔及其组分中的铅、锡对环境造成污染等问题,进行了用无铅、无锡绿色环保型阴极电泳漆EC3000AM取代ECl000的工艺试验。在正常生产状态下,采用逐渐混溶的方式,通过合理、科学的控制,实现了由EC1000到EC3000AM的转换、转换后,电泳漆膜基本没有缩孔,流平性大大改善。  相似文献   

12.
13.
Power loss optimization aiming at the high-efficiency drive of front-and-rear-induction-motor-drive electric vehicle (FRIMDEV) as an effective way to improve energy efficiency and extend driving range is of high importance. Different from the traditional look-up table method of motor efficiency, power loss optimization of the dual- motor system based on the loss mechanism of induction motor (IM) is proposed. First of all, based on the power loss characteristic of FRIMDEV from battery to wheels, the torque distribution optimization model aiming at the minimum system power loss is put forward. Secondly, referring to d-q axis equivalent model of IM, the power loss functions of the dual-IM system are modeled. Then, the optimal torque distribution coefficient (β o) between the two IMs is derived, and the theoretical switching condition (T sw) between the single- and dual-motor-drive mode (SMDM and DMDM) is confirmed. Finally, a dual-motor test platform is developed. The derived torque distribution strategy is verified. The influence of motor temperature on β o and T sw are tested, and the correction models based on temperature difference are proposed. Based on the system power loss analysis, it can be confirmed that, under low load conditions, the SMDM takes priority over the DMDM, and the controller of the idling motor should be shut down to avoid the additional excitation loss. While under middle to high load conditions, even torque distribution (β o = 0.5) is preferred if the temperature difference between the two IMs is small; otherwise, β o should be corrected based on dual-motor temperatures. The theoretical T sw derived without dealing with temperature difference is a function only of motor speed, while temperature difference correction of it should be conducted in actual operations based on motor resistance changing with temperature.  相似文献   

14.
Installed between metallic DIW (Door in White) panel and nonmetallic door glass, automotive window seals has great influence on customers’ perception of NVH (Noise-Vibration-Harshness) performance. Recently, aerodynamic effect on ride comfort attracts increasing research interest. The external load causes unsteady pressure on glass, which is finally transferred to window seals and leads to complicated vibration and increases interior noise level. However, non-linearities of hyper-elastic material, rubber-glass contact and large deformation behavior make the construction of window seals constraint model much more difficult, thus impeding further analysis and optimization. A new window seal design method is proposed featuring in considering aerodynamics-induced load and nonlinear constraint. Firstly, by SST ? k ? ε (Shear Stress Transport) turbulence model, external flow field of full-scale automotive is established by solving three-dimensional, steady and uncompressible Navier-Stokes equation. With re-exploited mapping algorithm, the overall aerodynamic pressure is extracted and matched to local window as external loads for seals, thus taking into account high speed fluid-structure interaction. Secondly, based on functional equivalence and mathematical fitting, new surrogate constraint model is presented. The unitedseal CLD (Compression Load Deflection) curve is synthesized after translations and transformations from two semi-seal CLD experimental measurements of inner and outer lips. It is then fit to complex exponential function, making seal constraint equivalent to a surrogate elastic constraint with variable stiffness. Experiment is performed to verify the constraint surrogation effectiveness. Finally, case study of window seal design under high speed is investigated. After seal optimization based on the new method, windows seals’ maximal displacements have decreased. The improved seal-glass fitting status shows better NVH quality of window seal in high-speed condition.  相似文献   

15.
In this paper, a gain scheduled linear quadratic tracking system (LQTS) tuned optimally by an evolutionary strategy (ES) is devised to reduce the total tailpipe hydrocarbon (HC) emissions of an automotive engine over the coldstart period. As the engine’s behavior during coldstart operations is nonlinear, the system dynamics is clearly analyzed and represented by a number of separate linear models generated based on a coldstart model verified by experimental data. An independent LQTS is then implemented for each of these linear models. In this way, several control laws are created, and the corresponding gains are calculated for each of the independent control laws. ES is then used to tune the adjustable parameters of LQTSs to calculate the control inputs, namely air/fuel ratio (AFR) and spark timing (Δ), such that the resulting exhaust gas temperature (T exh) and engine-out HC emissions (HC raw) be close to a set of optimum profiles. This enables the controller reduce the cumulative tailpipe hydrocarbon emissions (HC cum) to the highest possible extent. To demonstrate the acceptable performance of the proposed controller, an optimal controller derived from the Pontryagin’s minimum principle (PMP) is also taken into account. Based on the results of the conducted comparative study, it is shown that the proposed control technique has a very good performance, and also, can be easily used for real-time applications, as it consumes a remarkably trivial computational time for calculating the controlling commands.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号