首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
有碴桥上无缝线路采用小阻力扣件,在梁轨相对约束的条件下,钢轨、轨枕及梁跨结构三者之间将产生较明显的相对位移,以往的计算模型没有考虑轨枕和钢轨相对位移的影响,与有碴轨道小阻力扣件桥上无缝线路工况存在较大偏差.为此,建立了一种能综合考虑钢轨、轨枕、梁体三者相互作用的有碴轨道小阻力扣件桥上无缝线路附加力计算力学模型,给出了算例,对不同扣件纵向阻力工况下计算结果进行了对比.结果表明:扣件阻力明显影响钢轨及墩台附加力的变化,扣件阻力较小时,作用在墩台上及钢轨上的附加力变化较快,扣件阻力较大时,变化较慢;墩台刚度不同,则作用在墩台上及钢轨上各种附加力随扣件阻力的变化规律也有很大差别.  相似文献   

2.
桥上无缝线路附加力计算模型研究   总被引:2,自引:0,他引:2  
有碴桥上无缝线路采用小阻力扣件,在梁轨相对约束的条件下,钢轨、轨枕及梁跨结构三者之间将产生较明显的相对位移,以往的计算模型没有考虑轨枕和钢轨相对位移的影响,与有碴轨道小阻力扣件桥上无缝线路工况存在较大偏差.为此,建立了一种能综合考虑钢轨、轨枕、梁体三者相互作用的有碴轨道小阻力扣件桥上无缝线路附加力计算力学模型,给出了算例,对不同扣件纵向阻力工况下计算结果进行了对比.结果表明:扣件阻力明显影响钢轨及墩台附加力的变化,扣件阻力较小时,作用在墩台上及钢轨上的附加力变化较快,扣件阻力较大时,变化较慢;墩台刚度不同,则作用在墩台上及钢轨上各种附加力随扣件阻力的变化规律也有很大差别.  相似文献   

3.
轨道结构与桥梁共同作用力学计算模型的研究   总被引:12,自引:2,他引:10  
轨道结构与桥梁共同作用的力学计算模型是解决轨道纵向位移阻力与梁轨相对信移相互作用计算问题的关键。本文采用平面杆系建立轨道结构与桥梁共同作有的力学计算模型,将轨道结构、梁体、支座、墩台、基础作为整体来考虑。桥梁和轨道的联结采用性梁单元模拟,其材料弹性模量和屈服应力通过轨道纵向位移阻力与梁轨相对位移关系的双折线化确定;同时为考虑梁跨挠曲对无缝线路钢轨受力的影响,梁跨高度采用刚臂模拟。通过对梁轨相互作用模型结构的试验结果和《铁路无缝线路》(1995年修订版)一书中桥上无缝线路钢轨力的钢轨变形微分方程解计算算例作比较,证实这一力学计算模型的合理性。  相似文献   

4.
研究目的:目前的梁轨伸缩力算法较多使用常量阻力计算模型,当跨径很大时,有可能不存在有力学意义的解。为了得到准确的桥上无缝线路钢轨在温度作用下的伸缩力解析算法,解决桥梁温度跨度取值以及合理的纵向阻力选择问题,本文采用非线性纵向阻力模型,根据扣件进入塑性变形区的位置将无缝线路分成若干个区段,通过建立平衡微分方程组,求解得到钢轨位移及伸缩力。研究结论:(1)依照无缝线路规范设计条件,计算了不同纵向阻力、不同跨度桥梁上钢轨最大应力以及梁轨最大相对位移;(2)在不考虑制动力的情况下,可得出基于钢轨强度限值下不同纵向阻力对应的温度跨度限值;(3)以70 mm和90 mm作为断缝宽度限值,得出线路纵向阻力的最小取值分别为17 N/(mm·线)和13 N/(mm·线);(4)本文算法可为桥上无缝线路的桥梁温度跨度及线路纵向阻力的选择提供依据。  相似文献   

5.
研究目的:高速铁路整体式桥梁的分跨布置、墩柱刚度等设计参数与梁轨相互作用密切相关,当参数取值不合理时,将出现桥上钢轨变形过大、失稳、断裂等问题。为确保桥上线路安全运行,得到设计参数的取值范围及相关关系,本文基于双折线、多折线非线性阻力模型来模拟梁轨纵向阻力,建立梁轨微段受力平衡方程来得到钢轨的应力与位移等参数。分别结合钢轨强度、梁轨相对位移、墩顶位移、轨缝宽度及钢轨稳定性等约束条件,确定出桥梁温度跨度和墩柱刚度的相互关系及取值范围。研究结论:(1)温度跨度和墩柱刚度的取值主要受钢轨强度约束的影响,梁轨相对位移、墩顶位移、轨缝宽度和钢轨稳定性限值条件影响较小;(2)提出了温度跨度和墩柱刚度两个参数在规范限值条件下的相关关系计算公式;(3)本文算法及所得计算式可为整体式桥梁设计提供一定的参考。  相似文献   

6.
连续梁桥上无缝线路附加力研究   总被引:18,自引:2,他引:18  
以往对钢轨、轨枕及梁跨结构三者之间产生相对位移的计算模型,没有考虑轨枕位移的影响。在吸收国内外研究成果的基础上,建立了考虑钢轨、轨枕、梁体相互作用的连续梁桥上无缝线路梁、轨相互作用力学模型,并用该模型分析连续梁桥上无缝线路附加力分布规律,对两种力学模型计算结果进行对比。结果表明,挠曲附加力及断轨力受扣件阻力影响很大,降低幅度最多,伸缩附加力受扣件阻力影响小些,降低幅度次之;制动附加与扣件阻力关系不大,钢轨断缝值受扣件阻力影响很大,降低扣件阻力将导致断缝增大。  相似文献   

7.
本文系统地从简支梁上翼缘位移的求法、钢轨纵向位移阻力函数的确定、梁轨相对位移微分方程的建立诸方面介绍了桥上无缝线路钢轨附加力的计算方法。  相似文献   

8.
桥墩温差荷载作用下桥上无缝线路钢轨附加力研究   总被引:3,自引:1,他引:2  
根据梁轨相互作用原理,建立了"轨-梁-墩-体化"有限元模型,采用单位荷载法计算了桥墩温差荷载引起的墩顶纵向位移,计算了桥墩温差引起的桥上无缝线路钢轨附加力.桥墩高度对桥墩温差引起的钢轨附加力影响比较敏感,当桥墩较高时,桥墩温差引起的钢轨附加力不能忽略,建议在高墩桥上设计无缝线路时,应考虑桥墩温差引起的钢轨附加力,并与其他钢轨附加力进行荷载组合,检算钢轨强度和无缝线路稳定性.  相似文献   

9.
有砟轨道基础桥上无缝线路计算软件开发及应用   总被引:1,自引:1,他引:0  
运用梁轨相互作用基本原理,在考虑钢轨、桥梁和墩台相互作用的基础上,建立了桥上无缝线路的线桥墩空间一体化计算模型,用于对桥上无缝线路伸缩附加力、挠曲力、制动附加力、断轨力、梁轨相对位移及墩台纵向受力和变形的计算分析.为计算方便,以有限元软件ANSYS为计算平台,利用ANSYS参数化设计语言进行二次开发,编制了有砟轨道基础桥上无缝线路通用计算软件,可用于各种桥上无缝线路的设计计算.  相似文献   

10.
为研究城市轨道交通简支梁桥墩顶纵向刚度限值,建立20孔跨度均为30 m简支梁桥无缝线路计算模型,以钢轨强度、梁轨(板)相对位移和钢轨断缝值为控制指标,分析了墩顶纵向刚度对桥上无缝线路受力特性的影响。研究表明:随着墩顶纵向刚度增大,钢轨伸缩附加力增大,钢轨制动附加力和梁轨(板)相对位移降低;对于简支梁桥,控制墩顶纵向刚度的决定性指标是梁轨(板)相对位移;考虑一定的安全余量,建议30 m简支梁桥墩顶纵向刚度限值为双线240 kN/cm。为降低工程造价,可基于梁轨相互作用原理确定桥墩纵向刚度限值。  相似文献   

11.
针对城市轨道交通中新应用的双线U型梁和传统的双线箱型梁两种不同形式桥梁,用有限元法计算分析桥上无缝线路附加挠曲力及附加挠曲位移的分布,着重研究线路纵向阻力、桥梁跨度和桥墩刚度等参数变化对桥上无缝线路钢轨受力、桥墩受力及桥梁挠度的影响。研究结果表明,线路纵向阻力、桥梁跨度对钢轨挠曲力的影响较大,而桥墩纵向刚度对钢轨挠曲力的影响较小,为城市轨道交通设计提供理论参考依据。  相似文献   

12.
高速铁路多联大跨连续梁日益增多,而该情况下桥上无缝线路设计经验较少,探讨桥上无缝线路纵向附加力变化规律,对桥梁墩台及桥上无缝线路设计具有重要意义。建立了钢轨-扣件阻力-梁体-墩台一体化空间非线形有限元梁轨相互作用模型,并利用Ansys分析软件进行求解,计算分析了不同扣件阻力及不同桥跨布置工况下桥上无缝线路纵向附加力,并总结出纵向附加力变化规律,对多联大跨连续梁桥上无缝线路及桥墩设计有直接指导作用。  相似文献   

13.
桥上无砟轨道受力比较复杂,桥上无砟轨道无缝线路的稳定性直接影响高速列车的行车平稳与安全。基于有限元法和梁轨相互作用理论,建立了6×32 m混凝土简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,研究温度荷载作用下钢轨、轨道板及底座板的受力变形特性,并对相关影响参数进行分析。结果表明:在温度荷载作用下,钢轨伸缩力的峰值出现在桥梁墩台及跨中,钢轨的纵向位移呈现先增后减的趋势,在中间两跨达到最大值,钢轨和轨道板的纵向伸缩趋势基本一致,表明扣件起到了很好的约束作用;桥上采用小阻力扣件可改善桥上无缝线路梁轨相互作用,但要充分考虑轨板相对位移不能过大,保证钢轨在桥台处的爬行能够得到有效控制;从减小桥上轨道结构伸缩力及纵向位移考虑,桥梁墩台固定端纵向刚度不宜过大。  相似文献   

14.
结合几内亚Simandou重载铁路项目,建立有砟轨道单线简支梁线桥模型,分析40 t轴重列车作用下线路纵向位移阻力曲线变化对重载铁路无缝线路纵向力的影响。研究结果表明:当墩顶线刚度较小时,钢轨制动附加应力随纵向阻力的增大而增大,随屈服位移的增大而减小;梁轨快速位移差随纵向阻力的增大而减小,随屈服位移的增大而增大;纵向阻力变化对桥上无缝线路纵向力的影响大于屈服位移变化对纵向力的影响。  相似文献   

15.
温度梯度对高墩桥上无缝线路的影响分析   总被引:3,自引:0,他引:3  
为研究温度对高墩大跨桥上无缝线路的影响,基于梁轨相互作用原理,利用有限元方法,建立线—桥—墩一体化模型,计算高墩大跨桥梁桥墩受到纵向和横向温度梯度荷载时钢轨的纵向力和梁轨相对位移。计算结果表明:桥墩受到纵向温度梯度荷载时钢轨受到的最大压力为523.09 kN,与最大附加伸缩力值584.95 kN接近,纵向温度荷载对桥上无缝线路的影响近似等同于附加伸缩力,在设计桥上无缝线路时必须予以考虑;横向温度梯度荷载对桥梁本身的影响较小,在设计中可以通过安全系数予以控制,在设计中可忽略。分析温度荷载对高墩桥上无缝线路的影响,对于桥梁的安全设计和保证桥上无缝线路的稳定状态均具有一定的指导意义。  相似文献   

16.
为探究活动支座摩阻对大跨连续梁桥上无缝线路梁-轨相互作用的影响,基于梁-轨相互作用及有限元理论,将活动支座摩阻等效为非线性弹簧,建立可考虑活动支座摩阻的连续梁桥上无缝线路空间耦合模型,对考虑活动支座摩阻前、后的钢轨及桥墩结构受力变形展开对比分析。结果表明,活动支座摩阻增强了连续梁与无缝线路的纵向约束,当活动支座摩阻率从0增大至0.06时,温度作用下,连续梁桥上钢轨纵向力及梁轨相对位移峰值分别减小了24.32%和29.89%,连续梁桥固定墩纵向力增加了2.44倍;制动荷载作用下,钢轨制动力、梁轨相对位移及连续梁桥固定墩纵向力分别减小了53.51%、56.94%和41.63%;断轨工况下,部分断轨力通过活动支座摩阻传递给非固定墩,连续梁桥固定墩纵向力减小了60.64%,钢轨断缝值减小了3.3%;活动支座摩阻对大跨连续梁桥上无缝线路及桥墩纵向力影响较大,建议在大跨连续梁桥上无缝线路及桥墩设计中考虑活动支座摩阻的影响。  相似文献   

17.
连续梁桥上无缝线路伸缩附加力计算研究   总被引:9,自引:0,他引:9  
连续梁桥上无缝线路存在着巨大的伸缩附加力,但一直没有恰当的计算方法。根据以往的试验和计算结果,分析了连续梁桥上无缝线路梁轨相互作用原理,采用常量阻力,拟定出钢轨伸缩附加力的形函数;根据钢轨位移和伸缩力的微分关系得到钢轨的位移函数;结合桥上无缝线路的边界条件和变形协调备件列出非线性方程组,利用MATLAB镏软件编程计算得到解答。该方法原理清晰明了,计算过程简单明确,计算结果准确,具有实践运用价值。  相似文献   

18.
桥梁温度跨度对双块式无砟轨道无缝线路的影响研究   总被引:1,自引:1,他引:0  
为研究桥梁温度跨度对桥上双块式无砟轨道无缝线路的影响,运用线板桥墩一体化模型,计算不同温度跨度下,分别采用常阻力和小阻力扣件时的钢轨纵向力、道床板纵向力、抗剪凸台纵向力、梁轨相对位移以及钢轨断缝,分析桥梁温度跨度对轨道结构强度与变形的影响。结果表明:(1)随着桥梁温度跨度的增加,钢轨伸缩、挠曲、制动附加力和梁轨相对位移均增大;道床板、抗剪凸台纵向力和钢轨断缝保持不变。(2)扣件阻力减小时,轨道结构纵向力均减小;但梁轨相对位移和钢轨断缝增大。(3)为保证钢轨强度要求,当桥上铺设常阻力扣件时,桥梁温度跨度限值可取135m;当桥上铺设小阻力扣件时,桥梁温度跨度限值可取250m。  相似文献   

19.
基于梁轨相互作用原理,采用有限元方法建立线-桥-墩一体化计算模型,以多跨简支梁和连续梁为例,分析不同墩台刚度对桥上无缝线路计算的影响。计算结果表明:钢轨伸缩力与伸缩位移、墩台纵向力均随着墩台纵向水平刚度的增大而增大,但增加幅度逐渐减缓;墩台自身的纵向水平位移会改变梁轨系统的纵向受力情况,当桥梁墩台自身位移较大时,应在桥上无缝线路纵向力计算中考虑其作用;钢轨挠曲力随着墩台刚度增大而增大,桥墩纵向水平刚度对钢轨制动力及梁轨相对位移的影响较为明显,应据此设定其对墩台最小水平刚度的限值;墩台刚度越大,钢轨断缝值越小。为满足断缝值不超限,桥梁墩台设计时应合理确定其纵向水平刚度值。  相似文献   

20.
为了研究线路纵向阻力形式对桥上无缝线路纵向力的影响,基于梁轨相互作用原理,采用有限元方法建立了线-桥-墩一体化计算模型,以多跨简支梁为例,分析了常阻力、双线性和幂指数型等不同形式的线路阻力对计算桥上无缝线路时的影响。计算结果表明:常量阻力下计算得到的钢轨伸缩力较双线性及幂指数型阻力要小,且随温度跨度的增加双线性和幂指数型计算结果越来越接近,而常量阻力与两者差别逐渐增大;计算钢轨制动力时,常量阻力计算结果要小得多,且梁轨相对位移较大,已超出我国检算标准;不同钢轨降温幅度下,双线性和幂指数型阻力计算的钢轨断缝值基本相同,但却远小于常量阻力,且钢轨降温幅度越大,差别越大。由此可知,应重视线路阻力形式的选取,尽量由实际测试数据进行拟合,使其能模拟真实的现场情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号