首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《公路》2021,66(8):115-123
传统的重力式锚碇基础设计不考虑围护结构对基础承载力的贡献,而地下连续墙作为围护结构由于自身的结构特性,会在锚碇基础的承载时发挥一定作用。针对虎门二桥东锚碇基础,采用有限元方法分析了施加缆力前后锚碇基础的承载特性,并对地下连续墙在锚碇基础中荷载分担比和锚碇最大水平位移的影响因素进行了研究。结果表明,缆力的施加导致锚碇基础的水平剪力和弯矩均迅速增大并重新分布,地下连续墙始终承担了一定比例的荷载;施加缆力后,锚碇基础和地下连续墙的内力的峰值点或拐点均位于强风化软岩层与中风化软岩层分界面处,地下连续墙嵌入中风化软岩层的部分发挥了较大承载作用;地下连续墙的墙厚对地下连续墙在锚碇基础中的内力比影响最大;岩层弹性模量和地下连续墙的嵌岩深度对锚碇最大水平位移控制作用影响大。  相似文献   

2.
珠江黄埔大桥南汊悬索桥北锚碇位于珠江中心岛上,其基础设计采用圆形地下连续墙方案。地下水位受潮汐影响,对地下连续墙施工影响较大,如何优化各施工环节、控制成槽质量是施工成功的关键。介绍黄埔大桥锚碇基础地下连续墙施工技术。  相似文献   

3.
地下连续墙作为锚碇基础开挖的重要防护结构,施工质量及工期控制对整个项目影响极大,尤其在非洲等欠发达地区,为保证莫桑比克马普托大桥北锚碇地下连续墙施工顺利进行,展开了试验槽段的研究,论述了试验槽的实施目的、实施过程以及对地下连续墙正式槽段施工的指导意义。  相似文献   

4.
《公路》2017,(1)
传统的重力式锚碇设计方法不考虑围护结构对基础承载力的贡献,随着施工技术与质量的进步,发挥地连墙围护结构承载力贡献的新型复合基础成为新的研究方向。以虎门二桥工程锚碇基础为背景采用有限元软件模拟了锚碇基础的建造过程,分析了缆力施加前后地下连续墙-锚碇的受力与位移变化,验证了地下连续墙-锚碇复合基础协同承载假定。研究表明:地下连续墙的抗剪强度、地下连续墙与周围土体的摩阻力对锚碇基础水平向抗滑移承载力均有贡献;采用地下连续墙作为基坑围护结构的大跨悬索桥锚碇基坑设计可考虑地下连续墙-锚碇基础的协同承载特性。  相似文献   

5.
武汉杨泗港长江大桥为主跨1 700m的单跨双层悬索桥,武昌侧锚碇为重力式锚碇(由地下连续墙、帽梁、内衬、底板及填芯混凝土组成),锚碇开挖直径98m、深39m,位于长江大堤南岸附近,地质条件较差。根据锚碇结构特点和地质条件,地下连续墙共划分68个槽段,Ⅰ、Ⅱ期槽段各34个,间隔分布,分别采用成槽机和铣槽机施工,接头形式为铣接头;基坑开挖前,采用地下连续墙墙底注浆、接缝处旋喷、抽水井等止排水措施,深基坑开挖采取逆作法施工,边开挖取土方边施工内衬,采用履带吊机将土方从基坑内吊出,帽梁和内衬分8段施工;锚碇底板、填芯大体积混凝土分层分块施工,采用冷却循环水、低水泥掺量的混凝土配合比等温控措施,保障了锚碇施工质量。  相似文献   

6.
深中通道伶仃洋大桥为主跨1 666m的全飘浮钢箱梁悬索桥,该桥东锚碇为重力式锚碇,采用8字形地下连续墙基础作为基坑开挖施工的支护结构。东锚碇基坑支护结构采用海中筑岛围堰的总体方案施工。东锚碇基坑支护结构施工前,在海中首先采用锁扣钢管桩及工字型钢板桩组合的围堰方案筑岛形成施工陆域,结合河床表层清淤、砂石垫层换填、插打塑料排水板等措施对筑岛陆域进行地基处理;待筑岛地基沉降稳定后,地下连续墙采用"旋挖引孔+铣槽"的复合成槽工艺施工;地下连续墙施工后,基坑采用岛式法分12区(平面)、14层(竖向)进行阶梯形开挖,同时采用同步降排水措施(设6个降水井、6个集水井)进行基坑开挖施工。  相似文献   

7.
G3铜陵长江公铁大桥主桥为主跨988 m的斜拉-悬索协作体系桥。江北侧锚碇设计时对沉井基础和地下连续墙基础进行比选,综合考虑开挖范围、工程造价、施工工期等,最终采用基底深置的地下连续墙基础,以下伏基岩弱胶结泥质砂岩作为基础持力层,基础高49.5 m,地下连续墙墙底嵌入中等胶结泥质砂岩,地下连续墙高55.5 m。为减小锚碇基础的开挖量,采用大悬臂外挑锚块结构结合CFG桩复合地基加固技术的新型复合型地下连续墙基础,地下连续墙基础直径缩小至60 m,节省了工程造价。锚碇基础施工中基坑分层开挖,同时进行内衬砌施工。采用PLAIXS 3D软件对锚碇施工阶段及运营阶段进行有限元模拟分析,基坑开挖时地下连续墙结构受力安全,锚碇基础地基承载力、地基沉降结果均满足规范要求。  相似文献   

8.
《公路》2020,(8)
地下连续墙作为悬索桥锚碇基础的重要围护结构,最早出现在1980年代的日本,刚度大、占地少、施工速度快、防渗性能好、经济效益高等优点使其得到广泛应用。我国自虎门大桥引进并采用地下连续墙作为锚碇围护结构以来,多座越江跨海跨悬索桥采用了地下连续墙围护结构,如阳逻长江大桥的圆形地下连续墙、润扬大桥的矩形地下连续墙、南京长江四桥的八字形地下连续墙、深中通道海中八字形地下连续墙等。随着施工装备及工艺的进步,探讨地下连续墙作为基础的永久受力结构的报道越来越多,日本青森大桥将地下连续墙作为索塔基础使用,虎门二桥坭洲水道桥、棋盘洲长江大桥、清云西江特大桥和深中通道等都在探索地下连续墙作为永久结构的一部分参与锚碇基础的受力,正处在施工过程中的土耳其恰纳卡莱大桥采用地下连续墙作为壁板桩参与锚碇基础的永久受力。正在进行前期研究的广州市莲花山过江通道,桥梁方案之一为主跨2 100m的双向12车道悬索桥,锚碇基础的埋置深度与尺寸规模的降低,对工程具有重要意义,采用地下连续墙参与永久结构受力也是重要的研究方向之一。  相似文献   

9.
莫桑比克马普托(M aputo )大桥主桥为单跨680 m悬索桥,为确定马普托大桥锚碇基础方案,依据大桥桥位处的地质和水文情况,以及重力式锚碇的结构受力特点,针对锚碇基础基底持力层选择、施工工艺的适用性、技术可行性、经济性、合理性,分别对沉井基础和地下连续墙基础进行研究。研究结果表明:采用地下连续墙基础,施工期间可以避免由于地质情况变化带来的风险,如翻砂、突涌等;可以严格控制锚碇基础施工过程中对周围土体造成的沉降,最大限度地减少对周围铁路正常运营的影响。在确定地下连续墙基础形式后,针对施工过程中的突涌问题,对深地下连续墙和浅地下连续墙+灌浆帷幕+深井抽排水降低水头方案进行研究。研究结果表明:采用深地下连续墙基础,投入设备相对单一,施工工艺、工序简单,施工工效相对较高,施工工期较短,工期可控,应为马普托大桥合理的锚碇基础方案。  相似文献   

10.
南京长江第四大桥南锚碇基础地下连续墙施工   总被引:1,自引:0,他引:1  
南京长江第四大桥主桥为双塔三跨悬索桥,其南锚碇基础支护结构为"∞"形地下连续墙,分Ⅰ期、Ⅱ期2种槽段,槽段采用铣接法连接。施工前先进行地质水文详勘与封排水设计、地基加固、修筑导墙及试验槽段施工。按隔墙、北外墙、Y形槽段、南外墙顺序施工地下连续墙,先施工Ⅰ期槽段,再施工Ⅱ期槽段。Ⅰ期槽段采用三铣成槽,Ⅱ期槽段采用一铣成槽,Y形槽段采用五铣成槽。在外墙预埋钢管进行墙底帷幕灌浆。基坑开挖前进行抽水试验,结果表明基坑日渗水量≤150 m3;基坑开挖过程中,围护结构变形和周边土体的沉降均小于预警值,说明地下连续墙施工质量良好。  相似文献   

11.
夏欢  朱其敏  王通  纪晓宇 《公路》2023,(6):92-99
张靖皋长江大桥锚碇基础创开创性地采用了支护转结构复合地下连续墙基础结构,南锚碇外围双层地下连续墙设计深度达83 m,采用钢箱混凝土和钢筋混凝土搭配成墙的施工工艺,先行槽段中钢箱在槽位中的姿态直接决定后行槽段钢筋笼是否能顺利下放到位,为验证该工艺的可行性,进行了试验研究,应用了一系列关键装备和施工工艺。首先,从钢箱分节段制造阶段开始利用先进的工厂化生产线严格把控加工精度,吊装过程中避免出现塑性形变,节段钢箱槽位垂直匹配对接过程中严格控制其线形;其次,采用大刚度顶口搁置方案,并使用钢箱槽位姿态纠偏系统高精度调节钢箱垂直度,使钢箱安装垂直度达到小于1/1 000的施工需求,且进行二次检测进行验证;最后,总结了试验过程中垂直度控制的关键技术和优化方向,为锚碇主体施工阶段的施工质量与效率提供了技术保障,为今后该类型复合地下连续墙基础的应用提供了参考和借鉴。  相似文献   

12.
朱其敏  朱俊涛  夏欢  王通  戴俊平 《公路》2023,(6):107-114
张靖皋长江大桥南航道桥跨度2 300 m,为世界最大跨径悬索桥,南锚碇采用了支护转结构复合地下连续墙基础,对地下连续墙施工质量提出了更高的要求,且存在超深异型槽段,成槽施工质量控制难度大。以南锚碇地下连续墙基础为依托,开展现场工艺试验,从槽壁稳定性控制、成槽施工工艺以及成槽质量控制3个方面系统研究了超深异型地下连续墙成槽施工关键技术,结果表明:采用水泥土搅拌桩以及加强施工过程中的泥浆管理,可以保证超深异型地下连续墙槽壁稳定性;相比于纯铣工艺,抓铣结合施工工艺有利于泥浆指标控制,可以降低清孔换浆时间,更加节能环保,主体工程施工时可将抓铣结合施工工艺推广至其他形状槽段施工;采用加长型孔口导向架可以防止异型槽段成槽时孔型发生扭转,应用勤测勤纠技术实现了超深地下连续墙高精度成槽,高于工程控制要求(1/800),保证了十字型槽段钢箱的顺利下放;采用更具备科学依据的贯入式沉渣厚度检测仪可以对沉渣厚度进行准确检测,从而控制沉渣厚度,保证地下连续墙承载力。  相似文献   

13.
珠江黄埔大桥南锚碇地下连续墙具有墙体深、厚度大等技术特点,介绍地下连续墙成槽施工泥浆站修建、泥浆制作、不同施工机械成槽施工时选配和泥浆使用的方法。  相似文献   

14.
武汉鹦鹉洲长江大桥主桥为(200+2×850+200)m三塔悬索桥,该桥北锚碇为"带孔圆环+十字隔墙"重力式沉井基础,沉井外径66m,高43m;1号塔基础为44根φ2.0m钻孔灌注桩,2号塔基础为39根φ2.8m钻孔桩;3号塔基础为20根φ2.8m钻孔桩;南锚碇为"圆形嵌岩地下连续墙+内衬"结构形式,地下连续墙为钢筋混凝土结构,外径68m,壁厚1.5m。根据该桥基础特点,北锚碇沉井采用3轮接高、3次下沉施工;1号塔基础采用筑岛、双排防护桩施工方案;2号塔基础采用先钢围堰后平台的施工方案,钢围堰采用气囊法整体下河;3号塔基础采用先平台后围堰、单排钻孔防护桩施工方案;南锚碇采用液压铣槽机配合冲击钻施工地下连续墙的施工方案。  相似文献   

15.
棋盘洲长江公路大桥主桥为主跨1 038m的单跨钢箱梁悬索桥。该桥南锚碇采用内径61m、壁厚1.5m的圆形地下连续墙基础,地下连续墙嵌入中风化岩层至标高-50.5~-41m,总深度58~67.5m。在地下连续墙内侧设置1.0~2.5m厚的钢筋混凝土内衬,锚碇基础封底底板厚6m、顶板厚7~15m,锚碇后锚块区域与地下连续墙基础顶板连为一体。沿地下连续墙底部设置灌浆帷幕;布置6个孔径为600mm的降水管井进行坑内降水、排水。结合项目建设条件对该地下连续墙基础进行强度、稳定、地基承载力及墙底岩石劈裂验算,结果均满足规范要求。目前该地下连续墙基坑已开挖至设计标高并完成首层封底。  相似文献   

16.
阳逻长江大桥南锚碇圆形地下连续墙设计   总被引:4,自引:0,他引:4  
徐国平  刘明虎  刘化图 《公路》2004,(10):11-14
通过武汉阳逻长江大桥南锚碇圆形地下连续墙的成功实施,介绍圆形地下连续墙的设计与计算方法,为今后悬索桥锚碇深基坑的设计提供了经验。  相似文献   

17.
某大桥为双塔双跨悬索桥,主跨跨径达到1 688 m,边跨钢箱梁长548 m,其西锚碇采用厚度为1.5 m的地下连续墙作为锚碇基坑开挖的主要围护结构,地下连续墙深入中、微风化泥岩,基坑开挖深度达到22.2 m,采用水泥粉喷桩加固软土。基于该大桥锚碇基坑围护结构施工,探讨超深锚碇基坑围护结构施工关键技术,并给出部分施工建议。  相似文献   

18.
依据对国内外悬索桥锚碇基础的充分分析,结合锚碇区的工程地质和水文条件,提出设置沉箱基础、筑岛地下连续墙基础、沉井钻孔桩复合桩基础等3种方案,并对3种方案进行综合比较,选择了沉井钻孔桩复合锚碇基础形式。  相似文献   

19.
介绍阳逻长江公路大桥南锚碇基础关键分项工程———圆形地下连续墙、内衬支护和封底的设计施工情况。该分项工程的顺利实施是南锚碇基础成功建设的关键。  相似文献   

20.
武汉阳逻长江大桥锚碇设计   总被引:1,自引:0,他引:1  
刘明虎  徐国平  刘化图 《公路》2004,(12):39-47
武汉阳逻长江大桥主桥为主跨1280m悬索桥,北锚碇采用放坡大开挖深埋扩大基础实腹式锚体重力式锚;南锚碇采用支护开挖深埋圆形扩大基础框架式锚体重力式锚,其基坑工程采用圆形地下连续墙加内衬的支护结构型式;在国内首次采用“无粘结可更换”预应力锚固系统。本文概述了锚碇的总体构造、基坑工程、锚体及锚固系统的结构设计及技术特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号