首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Neogene marine sedimentary record of the Mediterranean basin is characterised by the regular occurrence of organic-rich layers or sapropels. These sapropels are known to correlate with the precession cycle: their deposition coincides with precession minima. This correlation is thought to be caused to a large extent by a precession-induced increase in the amount of freshwater reaching the Mediterranean Sea. In the literature, various sources of this extra freshwater have been identified and different mechanisms as to how this freshwater flux leads to sapropels have been proposed. In this study we investigate the effects of precession-induced changes in the freshwater budget using a regional ocean general circulation model of the Mediterranean Sea. Emphasis is on the effects at the surface and at intermediate depth. The forcing of the ocean model is adjusted to precession minimum conditions on a parameter by parameter basis. Novel to our approach is that the value of the required adjustments is taken from a global coupled climate model with which experiments have been performed for the present day (close to precession maximum) and precession minimum. With the ocean model we focus on the extent to which extra runoff from either south (specifically: the river Nile) or north and changes in net precipitation over the sea itself lead to a more stable stratification; this we judge by the associated reduction of the sea surface salinity and mixed layer depth in the regions of intermediate and deep water formation. Our main finding is that the effects of (1) increased discharge of the rivers coming from the north, and (2) the increase in net precipitation over the sea itself, are of equal or greater importance than that of increase in Nile discharge.  相似文献   

2.
At great scales of time and space, the dynamics of the Mediterranean Sea, a concentration basin, are mainly linked to its freshwater budget. This budget is subject to evolutions due to man's use of freshwater and to climatic changes affecting precipitation and/or evaporation. Marine dynamics and Atlantic, atmospheric and terrestrial inputs are strong constraints for the geochemical behaviour of the Mediterranean Sea. From measurements made during the last decades in the deep western water, it appeared that temperature, salinity, nutrients and trace metal concentrations were changing with time. In spite of its depth, the Mediterranean Sea looks like a coastal ocean, according to its coast length, watershed and number of inhabitants and to its fast response to climatic and environmental changes. The changes discovered in deep homogeneous waters are signatures of evolutions occurred in the surface layer. But in this layer and particularly in coastal waters, climatic and/or environmental trends may be masked by seasonal and interannual variabilities of not only physical and chemical characteristics but also climatic forcing or anthropic inputs. Analyses of river runoff, atmospheric inputs or climatic trends together with marine evolutions indicate constraints concerning probable changes in the coastal sea and/or in the surface water and processes involved at the interfaces. Moreover, changes observed in coastal or deep-water constitute new constraints for the modelling of the marine circulation and the transfer of matter.  相似文献   

3.
The North Aegean Sea constitutes an important region of the Mediterranean Sea since in its eastern part the mesotrophic, low salinity and relatively cold water from the Black Sea (outflowing from the Dardanelles strait) meets the oligotrophic, warm and very saline water of Levantine origin, thus forming a thermohaline front. Mesozooplankton samples were collected at discrete layers according to the hydrology of the upper 100 m, during May 1997 and September 1998. In May highest biomass and abundance values (up to 66.82 mg m− 3 and 14,157 ind m− 3) were detected in the 10–20 m layer (within the halocline) of the stations positioned close to the Dardanelles strait. The front moved slightly southwards in September, characterized by high biomass and abundance values within the halocline layer. The areas moderately or non influenced by Black Sea water revealed lower standing stock values than the frontal area in both cruises and maxima were detected in the uppermost low salinity layer. Samples collected at the stations and/or layers more influenced by Black Sea water were distinguished from those collected at layers and/or stations more affected by Levantine waters in both periods. In May the former samples were characterized by the copepods Acartia clausi, Centropages typicus, Paracalanus parvus. The abundance of the above species decreased gradually with increasing salinity, in the horizontal and/or in the vertical dimension, with a parallel increase of the copepods Oithona plumifera, Oithona copepodites, Oncaea media, Ctenocalanus vanus, Farranula rostrata. During September the frontal area as well as that covered by the modified Black Sea water, were highly dominated by the cladoceran Penilia avirostris and doliolids. For both seasons, MDS plots, issued from the combination of mesozooplankton and water-type data, revealed the gradual differentiation of zooplankton composition from the frontal area towards the area covered by Levantine water, following the spreading and mixing of the Black sea water. The observed temporal and spatial variability in the distribution pattern of mesozooplankton standing stock and species composition seems to depend considerably on the variability of circulation and frontal flows.  相似文献   

4.
Bathymetry impacts on water exchange modelling through the Danish Straits   总被引:1,自引:0,他引:1  
Deep and narrow channels in Danish Straits are one of the governing factors for the Baltic–North Sea water and salt exchange. The channels have a depth up to 50 m and a horizontal scale of a few hundred meters. The typical horizontal resolution used in current operational three dimensional Baltic–North Sea models is 1 nautical mile (nm) which can not well resolve these deep channels. In this paper, an alternative method is used to generate the 1 nm resolution bathymetry so that the deep channel is well resolved and at the same time the total water volume is roughly conserved. The impact of the new bathymetry on modelling water and salt transports as well as temperature and salinity structure is assessed by comparing a 3-year model run with the adjusted bathymetry and a control run with the averaged bathymetry. Volume and salt transports through the Great Belt are examined in the two runs. The results show that the model ocean is dominated by a typical two-layer transport (i.e., upper brackish Baltic outflow and lower saltier inflow), and the new bathymetry significantly enhances the two-layer transport. The lighter Baltic outflow is increased by 18% in the upper 10 m and saltier deep inflow is increased by 300% (in comparison with the old bathymetry) below 10 m. The total net transport into the Baltic Sea is increased by 13%. The temperature and salinity structure is also significantly influenced by the bathymetry, especially during inflow events. The stratification is strengthened and the bottom salinity is increased in Danish Straits and adjacent waters. The bathymetry impact is found significant through the entire 3-year model run period, and the signal is propagated to a large area covering the Stopple Channel. Comparison with observations show that such changes are positive improvements to the models. The results suggest that the deep channels in the Danish Straits have to be carefully resolved in order to correctly simulate the Baltic–North Sea water exchange.  相似文献   

5.
Suspended material, nutrients and organic matter in Mackenzie River water were tracked along a 300 km transect from Inuvik (Northwest Territories, Canada), across the estuarine salinity gradient in Kugmallit Bay, to offshore marine stations on the adjacent Mackenzie Shelf. All particulates measured (SPM, POC, PN, PP) declined by 87–95% across the salinity gradient and levels were generally below conservative mixing. Organic carbon content of suspended material decreased from 3.1% in the river to 1.7% in shelf surface waters while particulate C:N concurrently decreased from 17.1 to 8.6. Nitrate and silicate concentrations declined by more than 90% across the salinity gradient, with nitrate concentrations often below the conservative mixing line. Phosphate concentrations increased from 0.03 μmol/L in the river to 0.27 μmol/L over shelf waters, thereby changing the inorganic nutrient regime downstream from P to N limitation. Dissolved organic carbon decreased conservatively offshore while dissolved organic N and P persisted at high levels in the Mackenzie plume relative to river water, increasing 2.7 and 25.3 times respectively. A deep chlorophyll-a maximum was observed at two offshore stations and showed increases in most nutrients, particulates and organic matter relative to the rest of the water column. During river passage through the Mackenzie estuary, particulate matter, dissolved organic carbon and inorganic nutrients showed sedimentation, dilution and biological uptake patterns common to other arctic and non-arctic estuaries. Alternatively, inorganic content of particles increased offshore and dissolved organic N and P increased substantially over the shelf, reaching concentrations among the highest reported for the Arctic Ocean. These observations are consistent with the presence of a remnant ice-constrained (‘stamukhi’) lake from the freshet period and a slow flushing river plume constrained by sea-ice in close proximity to shore. Nutrient limitation in surface shelf waters during the ARDEX cruise contributed to the striking deep chlorophyll-a maximum at 21 m where phytoplankton communities congregated at the margin of nutrient-rich deep ocean waters.  相似文献   

6.
Estuaries along the southern shore of the Bohai Sea are the major habitat of the Bohai Penaeid Prawn (Penaeus chinensis). Since the 80's, however, many of the rivers have been dammed. Field observations, as well as laterally integrated 2-D numerical experiments, were conducted to understand both the role of estuarine gravitational circulation and the impact of the damming of the rivers on the early life of the Bohai Penaeid Prawn.For a river with runoff, especially for small discharge, the gravitational circulation tends to transport the planktonic larvae in their metamorphosis phase near the river mouth where condition is favorable for survival. The gravitational circulation inside the estuary tends to transport the mysis phase larvae towards the upstream end of the estuary when the most part of the larvae suspended in the bottom layer, and it transports the post larvae to the low salinity near upstream side of the estuary when the larvae become benthic, if the larvae enter the estuary.Damming causes long periods of zero runoff in the river, resulting in the alteration of the estuarine circulation and in the change of the estuarine environment. In addition, excess evaporation may prematurely transport the planktonic larvae into the estuary. On the other hand, sudden release of a large volume of freshwater from behind the dam may exert undesirable stress on the larvae.  相似文献   

7.
Seasonal and inter-annual variations in surface freshwater fluxes in the Mediterranean Sea are examined. Evaporation and precipitation rates are estimated from ERA15, the re-analysis project carried out at the European Center for Medium-Range Weather Forecasts (ECMWF) for the period 1979–1993. A seasonal cycle of river runoff is computed from a recent historical data set. The climatological mean for precipitation (326 mm/yr) is comparable to previous estimates, whereas that for evaporation (920 mm/yr) is low compared to other independent estimates, but regions of high and low evaporation rates are correctly located. The budget reveals an annual mean freshwater deficit in the Mediterranean of 480 mm/yr, lower than previous estimates because of the lower evaporation rate estimated by ECMWF. Consequently, the flows through the straits of Gibraltar and Sicily, deduced from the freshwater budget, are found to be slightly low.Seasonal and inter-annual variabilities of ERA15 precipitation are consistent with those deduced from independent precipitation estimates obtained with SSM/I observations for the 1988–1993 period. ECMWF and satellite estimates both agree on the amplitude of the seasonal cycle. The seasonal cycle of the river runoff has a globally small contribution to the freshwater budget, but is significant in summer when the precipitation is nearly null. The variability of the freshwater flux for the Mediterranean as a whole shows a strong seasonal cycle (amplitude of 50 mm/month), which seems to be mainly controlled by evaporation. The inter-annual variability of the freshwater flux, however, appears to be governed mainly by precipitation. Its amplitude, which is of the order of 50 mm/yr on average but may reach nearly 150 mm/yr for a particular year, is considered to be large but nevertheless not sufficient to explain differences observed in the estimates of the climatological mean freshwater flux proposed by various authors. The freshwater deficit in the Mediterranean Sea has globally increased by nearly 50 mm, mainly because of a decrease in precipitation over this 15-yr period.  相似文献   

8.
The characteristics and interannual variability of the deep water masses in the North and Central Aegean Sea are being investigated through the data sets of the Hellenic Navy Hydrographic Service (HNHS) and the MEDATLAS 1997 project. In the period between 1987 and 1993, the densest deep water in the Mediterranean has been produced in the Aegean Sea (with σθ densities reaching up to 29.6 kg/m3), contributing to what has been called the Eastern Mediterranean Transient. The examination of time series of mean integrated values of θ, S and σθ below the depth of 500 dbar reveals the significant deep water density increase after 1987 in all of the deep basins in the area. Data suggest that the density increase of 1987–1988 is mainly attributed to a temperature drop, while in 1993, an even more intense density increase is observed, characterized this time by an abrupt salinity increase. We assume that the increased salinity necessary to produce deep water masses with the observed characteristics was not locally produced but rather advected from the Levantine through the South Aegean. After 1993, no new deep water formation episodes have been observed. A series of ΘS diagrams derived from HNHS CTD casts covering the period between 1993 and 2000, depict the different characteristics of the deep water masses in the area. As 1993 marks the end of the formation period, observed differences between basins in that year must be attributed to different deep water formation sites. Thereafter, the stagnating deep water in the North and Central Aegean basins has been slowly gaining buoyancy by losing salt and gaining heat. The rate at which this phenomenon takes place varies between different deep basins. It is suggested that these variations are linked to the different volumes of each basin as well as to the general circulation features of the Aegean Sea.  相似文献   

9.
Depth profiles of heterotrophic bacteria abundance were measured weekly over a 6-month period from December to May in Franklin Bay, a 230 m-deep coastal Arctic Ocean site of the southeastern Beaufort Sea. Total bacteria, low nucleic acid (LNA) and high nucleic acid (HNA) bacteria abundances were measured using flow cytometry after SYBR Green I staining. The HNA bacteria abundance in surface waters started to increase 5–6 weeks after phytoplankton growth resumed in spring, increasing from 1 × 105 to 3 × 105 cells mL− 1 over an 8-week period, with a net growth rate of 0.018 d− 1. LNA bacteria response was delayed by more than two months relative to the beginning of the phytoplankton biomass accumulation and had a lower net growth rate of 0.013 d− 1. The marked increase in bacterial abundance occurred before any significant increase in organic matter input from river discharge (as indicated by the unchanged surface water salinity and DOC concentrations), and in the absence of water temperature increase. The abundance of bacteria below the halocline was relatively high until January (up to 5 × 105 cells mL− 1) but then decreased to values close to 2 × 105 cells mL− 1. The three-fold bacterial abundance increase observed in surface waters in spring was mostly due to HNA bacteria, supporting the idea that these cells are the most active.  相似文献   

10.
Historical oceanographic surveys carried out around the Balearic Islands (western Mediterranean) suggest two different scenarios for the regional ocean circulation. In one scenario, occurring during cold winters, cool water is formed at intermediate layers (100–300 m) in the Gulf of Lions. This Western Mediterranean Intermediate Water (WIW) usually moves southward reaching the Balearic Channels, deflecting the warmer Levantine Intermediate Water (LIW) coming from the Eastern Mediterranean, and even blocking the Ibiza Channel. On the other hand, during mild winters, less WIW is formed and then LIW flows through the channels, appearing at their characteristic depths. The oceanographic surveys around the Balearic Islands (1985–2004) have provided a qualitative index, indicating the presence or not of WIW in the Ibiza Channel, based on the analyses of θS diagrams. A quantitative index based on mean water temperature between 100 and 300 m depth in the channels may also be defined. Both indexes, the qualitative and the quantitative, give consistent information on WIW presence for the period 1985–2004, however, both are short in time and have gaps in the series. In order to obtain a longer and continuous index for WIW presence and then for regional circulation, air–sea heat fluxes at the Gulf of Lions during winter months were obtained from the meteorological NCEP/NCAR reanalysis dataset and compared with other meteorological data such as surface air temperature. The standardized air temperature anomalies at 1000 hPa in the Gulf of Lions during winter (December–March) has been shown to be the simplest and best indicator of absence/presence of WIW in the Balearic Islands channels in late spring. Values above 1.0 of the standardized temperature anomaly would indicate absence of WIW in the Ibiza Channel. The high correlation obtained with available in-situ oceanographic data allows the use of this index as an indicator of presence of WIW and then of different regional circulation scenarios backwards in time and in those years for which the oceanographic data are missing or scarce.  相似文献   

11.
Variations in oxygen conditions below the permanent halocline influence the ecosystem of the Baltic Sea through a number of mechanisms. In this study, we examine the effects of physical forcing on variations in the volume of deep oxygenated water suitable for reproductive success of central Baltic cod. Recent research has identified the importance of inflows of saline and oxygenated North Sea water into the Baltic Sea for the recruitment of Baltic cod. However, other processes have been suggested to modify this reproduction volume including variations in timing and volume of terrestrial runoff, variability of the solubility of oxygen due to variations in sea surface temperature as well as the influence of variations in wind stress. In order to examine the latter three mechanisms, we have performed simulations utilizing the Kiel Baltic Sea model for a period of a weak to moderate inflow of North Sea water into the Baltic, modifying wind stress, freshwater runoff and thermal inputs. The model is started from three-dimensional fields of temperature, salinity and oxygen obtained from a previous model run and forced by realistic atmospheric conditions. Results of this realistic reference run were compared to runs with modified meteorological forcing conditions and river runoff.From these simulations, it is apparent that processes other than major Baltic inflows have the potential to alter the reproduction volume of Baltic cod. Low near-surface air temperatures in the North Sea, the Skagerrak/Kattegat area and in the western Baltic influence the water mass properties (high oxygen solubility). Eastward oriented transports of these well-oxygenated highly saline water masses may have a significant positive impact on the Baltic cod reproduction volume in the Bornholm Basin.Finally, we analysed how large scale and local atmospheric forcing conditions are related to the identified major processes affecting the reproduction volume.  相似文献   

12.
The water mass, circulation and chemical properties of the Cilician Basin, the northeastern Levantine Sea, are described on the basis of three hydrographic cruises performed during May 1997 (spring), July 1998 (summer) and October 2003 (autumn). The hydrographic data reveal the presence of Levantine Surface Water (LSW) and Modified Atlantic Water (MAW) within the upper 90 m layer, Levantine Intermediate Water (LIW) between 90 and 250 m, and Transitional Mediterranean Water (TMW) further below. The temporal variability of the circulation system is manifested by a change in shape, size and intensity of eddies as well as the pathways of the Lattakia Basin coastal current system. The nutrient concentrations varied between nitrate + nitrite = 0.16–0.31 μM, phosphate = 0.02–0.03 μM and silicate = 0.95–1.2 μM for the surface layer during sampling periods. Dissolved nutrient concentrations in the Transitional Mediterranean Water were: 2.1–5.3 μM for NO3 + NO2, 0.10–0.21 μM for PO4 and 5.7–10 μM for Si. The molar ratios of nitrate to phosphate in the water column range between 5 and 20 in the surface layer and reach up to a value of 45 at the top of the nutricline at the depths of 29.05 kg/m3 isopycnal surface for most of the year. Below the nutricline the N / P ratios retain the values around 24–28.  相似文献   

13.
Mesozooplankton samples from the 4270-m deep Ierapetra Basin in the oligotrophic Levantine Sea have revealed a strong temporal variability in abundance and composition hitherto unknown for the deep sea pelagic zone. The phenomenon reflected by a survey in June 1993 as compared to January 1987 is assessed by (i) the increase of the mesozooplankton standing crop throughout the water column, (ii) the absence of a decline in mesozooplankton abundance with increasing depth below 1000 m, (iii) the outstanding dominance of two interzonal calanoid copepods at bathypelagic and abyssopelagic depths and (iv) a substantial faunal change due to the codominance of Calanus helgolandicus, which was found for the first time in the area. The underlying hydrographical factors are addressed in the light of the Eastern Mediterranean Transient (EMT). Apart from a possible long-term faunal change, the EMT may exaggerate episodic plankton blooms and surface-abyssopelagic coupling in space and time.  相似文献   

14.
The Black Sea northwestern shelf (NWS) ecosystem has been subjected to the strongest anthropogenic pressure of the entire Black Sea as about 80% of the freshwater runoff is discharged there.This paper presents a review of the global environmental changes related mainly to increased eutrophication in the western Black Sea basin.A case study (CoMSBlack 92a cruise) attempts to highlight the interaction of some natural and anthropogenic factors responsible for specific chemical and biological features in the western Black Sea environment. The significance of processes located near the Danube river mouth, which, due to their relatively small space scale, have not been recognized before, is clarified. Hydrological processess of specific importance to the distribution and transformation of antropogenic inputs are river plume dynamics, coastal upwelling and mixing and downwelling over the shelf break and slope in this part of the basin. A layer of low hydrological variability (“conservative layer”) appears to be a natural feature of the area, hypothesized to precondition specific biological and chemical processes there.The results suggest that the interplay between the Danube anthropogenic nutrient load with the natural hydrological fronts and gradients provides opportunities for enhanced biological activity thus contributing to the global environmental changes in the Black Sea NWS.  相似文献   

15.
The influence of intrusions of eastern North Atlantic central water (ENACW) in the north and northwestern Iberian shelf on phytoplankton composition and abundance and on particle-size distributions of seston was analyzed using data collected on three extensive cruises during spring 1991 and 1992. Water with temperature and salinity values between 12.20 and 13.86 °C and between 35.66 and 35.98 psu, respectively, characteristics of the subtropical type of ENACW (ENACWt), was detected in the upper 100 m of the water-column in all cruises, but particularly in the western coast in 1992. The highest salinity values of this water were found near the surface (0–100-m depth) and in early spring 1992, while minimum salinity values, and also minimum geographical extension, were found in late spring in both years. Phytoplankton blooms concentrated in frontal areas between different water types, with maximum intensity and extension in early spring.Using temperature and salinity characteristics, samples were classified in four groups corresponding to the major water types found in the region: Bay of Biscay central water (BBCW), two segments of ENACW of different salinity and surface water influenced by continental runoff. This classification was significantly confirmed by three independent discriminant analyses using hydrographic and chemical (dissolved nutrients and chlorophyll) variables, phytoplankton species abundance variables and particle-size concentration of seston variables. Phytoplankton blooms related to the presence of saline waters were characterized by the dominance of either chain-forming diatoms or a mixture of diatoms and phytoflagellates and high concentrations of seston. The diatom species dominating in saline waters were typical of upwelling-induced blooms occurring generally during summer. Blooms occurring in waters influenced by runoff also contained diatoms but in lower numbers than those of saline waters. Nutrients were not exhausted in the region, suggesting that phytoplankton populations were still in active growth. These results are interpreted taking into account the known variability in water-mass formation and in the poleward current driving ENACWt along the shelf, and indicate that saline intrusions are a major feature affecting the distribution and composition of plankton in the spring in the southern Bay of Biscay, thus enlarging to a wider spatial scale their reported influence on the pelagic ecosystem.  相似文献   

16.
The dissolved lead was studied in the whole salinity gradient of the system composed of the Loire estuary and the North Biscay continental shelf. About 130 samples were collected in winter 2001 and spring 2002 during Nutrigas and Gasprod campaigns (Programme PNEC-Golfe de Gascogne, RV Thalassa) and metal measurements were conducted on board by Potentiometric Stripping Analysis. In the Loire estuary, levels of dissolved lead ranged from 0.15 to 0.24 nM and from 0.04 to 0.26 nM in winter and spring, respectively. Compared to the concentrations reported in 1987 and 1990 (0.4–1.7 nM; Boutier, B., Chiffoleau, J.F., Auger, D., Truquet, I., 1993. Influence of the Loire river on dissolved lead and cadmium concentrations in coastal waters of Brittany. Estuar. Coast. Shelf S., 36:133–143, Estuarine, Coastal and Shelf Science 36, 133–143) our study indicated much lower values. The fall in concentration in the estuary could be attributed to the stopping of activity of Octel, a big manufacturer of tetra alkyl lead. Discharge in dissolved metal to the continental shelf by the Loire river was assessed as 7.5 and 1.9 kg day− 1 for winter and spring, respectively. On the continental shelf, levels of dissolved lead varied within 0.06 and 0.27 nM in winter (0.15 ± 0.06 nM, sd = 1.96, n = 49), whereas concentrations measured in spring were in the range 0.06–0.17 nM (0.09 ± 0.03 nM, sd = 1.96, n = 60). This difference in metal concentration was related to the amounts of rainfall that have fallen over the continental shelf: estimations of inputs by this way (74 and 32 kg day− 1 in winter and spring, respectively) appeared to be significantly higher than inputs from the Loire river (7.5 and 1.9 kg day− 1 in winter and spring, respectively). The distributions of dissolved metal in the surface waters highlighted the role of suspended particular matter (SPM) for a rapid “trapping” of lead near the mouth of the estuary. The vertical distributions showed, in the stratified area, a biological transfer of lead between winter and spring from surface waters to the halocline.  相似文献   

17.
The long-term mean fresh water balance of the Adriatic Sea is studied by ananalysing evaporation, precipitation and river runoff. Evaporation is computed from May latent heat flux and by means of bulk formula. In the latter case two wind speed data sets are used, namely those from the NMC and May. The sea surface temperature is taken from a historical Adriatic data set, and the air temperature and relative humidity come from the NMC data set. Two precipitation data sets are considered, namely the Legates and Willmott climatology and a data set consisting of data measured at 62 rain-gauge stations located on the Adriatic coasts. Runoff contribution to the fresh water balance is estimated from the long-term average flow rates of 39 rivers and the horizontal distribution of salinity in the upper mixed layer.The spatial distribution of the fresh water balance, as well as of its components, is analysed by means of monthly objective maps, from which averages and standard deviations are computed. The results obtained from the different computations are not always univocal, particularly in the evaluation of Summer evaporation, and are affected by relatively large statistical errors. Significant spatial and seasonal variability occurs, with a noticeable fresh water gain along the coastline of the northern and middle basins, while small areas of fresh water loss are found in the middle and southern basins. Nevertheless, on an annual basis, the difference between the fresh water losses by evaporation and the gains by precipitation and runoff is clearly negative, indicating that, unlike the whole Mediterranean, the Adriatic Sea is generally a dilution basin.  相似文献   

18.
Seasonal variability and the spatial distribution of sea surface temperatures (SST) and salinities (SSS) are reviewed, in relation to the prevailing climatological conditions, heat fluxes, water budget and general water circulation patterns. Within this context, consideration is given to: sea surface temperatures; air temperatures; precipitation; evaporation; wind speeds and directions; freshwater (mainly riverine) discharges throughout the Aegean; and the exchange of water masses with the Black Sea and eastern Mediterranean Sea. The investigation of satellite images, covering a 6-yr period (1988–1994), has enabled a synthesis of the monthly sea surface thermal distribution to be established.The climate of the Aegean Sea is characterised by annual air temperatures of 16–19.5°C, precipitation of about 500 mm yr−1 and evaporation of some 4 mm d−1. The Aegean has a negative heat budget (approximately −25 W m−2) and positive water balance (+ 1.0 m yr−1), when inflow from the Black Sea is considered. During the summer, the (northerly) Etesians are the dominant winds over the Sea.Mean monthly sea surface temperatures (SST) vary from 8°C in the north during winter, up to 26°C in the south during summer. SST depends mainly upon air temperature; there is a month's delay between the former and latter maxima. The sea surface salinity (SSS) varies also spatially and seasonally, ranging from less than 31 psu, in the north, to more than 39 psu, in the southeast; lower values (< 25 psu) occur adjacent to the river mouths. SSSs present their maximum differences during summer, whilst during winter and autumn the distribution of SSS is more uniform. The overall spatial SST and SSS distribution pattern is controlled by: distribution of the (colder) Black Sea Waters; advection of the (warmer) Levantine Waters, from the southeastern part of the Aegean; upwelling and downwelling; and, to a lesser extent, but locally important, freshwater riverine inflows.  相似文献   

19.
Estimating salinity to complement observed temperature: 1. Gulf of Mexico   总被引:1,自引:1,他引:0  
This paper and its companion [Thacker, W.C., Sindlinger, L., 2007-this issue. Estimating salinity to complement observed temperature: 2. Northwestern Atlantic. Journal of Marine Systems. doi:10.1016/j.jmarsys.2005.06.007.] document initial efforts in a project with the goal of developing capability for estimating salinity on a region-by-region basis for the world oceans. The primary motivation for this project is to provide information for correcting salinity, and thus density, when assimilating expendable-bathythermograph (XBT) data into numerical simulations of oceanic circulation, while a secondary motivation is to provide information for calibrating salinity from autonomous profiling floats. Empirical relationships between salinity and temperature, which can be identified from archived conductivity–temperature–depth (CTD) data, provide the basis for the salinity estimates.The Gulf of Mexico was chosen as the first region to explore for several reasons: (1) It's geographical separation from the Caribbean Sea and the North Atlantic Ocean makes it a “small ocean” characterised by a deep central basin surrounded by a substantial continental shelf. (2) The archives contain a relatively large number of CTD data that can be used to establish empirical relationships. (3) The sharp fronts associated with the Loop Current and its rings, which separate water with different thermal and haline characteristics, pose a challenge for estimating salinity. In spite of the shelf and the fronts, the relationship between salinity and temperature was found to be sufficiently regular that a single empirical model could be used to estimate salinity on each pressure surface for the entire Gulf for all seasons. In and below the thermocline, root-mean-square estimation errors are small — less than 0.02 psu for pressures greater than 400 dbar, corresponding to potential density errors of less than 0.015 kg/m3. Errors for estimates nearer to the surface can be an order of magnitude larger.  相似文献   

20.
Inter-annual variability of hypoxic conditions in a shallow estuary   总被引:2,自引:0,他引:2  
Water quality data from two monitoring programs in the Pamlico River Estuary (PRE) were analyzed for dissolved oxygen (DO), salinity, temperature, and nutrient concentrations. Data were collected bi-weekly at 8 stations from 1997 to 2003 by East Carolina University and continuously at three stations from 1999 to 2003 by the U.S. Geological Survey. Hypoxic conditions were observed mostly in the upper to middle estuary, but the frequency of hypoxic events varied between years. During June to October in 1997–1999 (referred to as the oxic summers) bottom water hypoxia (DO < 2 mg l− 1) was found in 8.7% of the observations. By contrast, during June to October in 2001–2003 (referred to as the hypoxic summers), 37.9% of the total measurements had DO concentrations less than 2 mg l− 1. The more frequent and/or prolonged hypoxic conditions during the hypoxic summers were closely associated with stronger salinity stratification and greater loadings of nutrient and particulate matter.Salinity stratification appeared to be governed by patterns of freshwater discharge, and frequency of wind mixing events. The “oxic” summers were characterized by continuous low freshwater inflow (except one extremely high flow event due to hurricanes), stronger northeastward wind, and more frequent wind mixing events. In contrast, the hypoxic summers were characterized by frequent moderate freshwater inflow events, and fewer wind mixing events.The greater loadings of nutrient (nitrate, ammonium, and phosphate) and particulate matter during the hypoxic summers were primarily due to higher river discharges. At the head of the PRE, no significant differences were found in concentrations of nutrient and particulate nitrogen between the oxic and the hypoxic summers. In addition, chlorophyll a concentrations were averaged above 30 μg l− 1 (maximum 167 μg l− 1) during the hypoxic summers, significantly higher than those during the oxic summers (averaged around 15 μg l− 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号