首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
[目的]运用边界元法计算船舶兴波阻力基本上是先求解船体附近的速度分布,然后采用伯努利方程进行压力积分,其计算过程复杂,且误差非常大。[方法]提出一种可快速计算船舶兴波阻力的复合算法,利用Rankine源格林函数求解船体表面源强,结合Lagally定理进行受力计算,并基于Kelvin源格林函数求解船舶兴波阻力。运用该算法对Wigley船的兴波阻力进行计算。[结果]计算结果表明,所用算法相较于运用线性兴波阻力中的薄船理论得到的结果精度更高,而且与完全使用Kelvin源格林函数的算法相比效率也更高。[结论]所用算法可在计算兴波阻力时作为精度与效率之间的一种折中方法。  相似文献   

2.
本文基于格林函数的Rankine源函数对船舶运动中的兴波阻力展开计算,由此提升直接法的计算精度,保障船舶的航行安全。  相似文献   

3.
针对航行船舶的兴波阻力和姿态预报,采用Rankine源高阶面元法求解船舶航行兴波问题。计算时采用叠模线性化自由面条件,对自由面影响系数奇异积分采用源点上置的方法处理,物面奇异积分和立体角则直接求解。就数学船型Wigley、S60和KCS集装箱船的航行兴波阻力与姿态分别进行了数值计算与分析,计算中根据姿态变化重新划分船体湿表面,进行迭代计算,不同航速下的姿态、兴波阻力和船侧波高与试验结果比较,吻合良好,自由面波形真实反映了物理现象,研究表明本文方法能准确地预报船舶航行姿态和兴波阻力,对不同船型和航行速度有着广泛的适用性。  相似文献   

4.

应用经典薄船理论,以Michell兴波阻力积分公式为基础,针对高速船的方尾船型特点,采用“虚长度”法,即在方尾后增加一个虚拟附体以使尾部封闭,通过对NPL船模系列(包括3b,4a,4b,4c,5a,5b,5c,6a,6b,6c共10条船型)的文献数据进行分析,总结得到一个计算虚长度的公式,同时对代号分别为4a,5c,6b的3种船型的兴波阻力进行数值计算,并与文献中的实验数据进行比较。研究表明,3条双体船型的计算结果与实验数据在趋势上吻合较好,在高傅汝德数下误差小于6%,符合工程应用要求。

  相似文献   

5.
基于兴波理论与阻力图谱资料的高速双体船阻力预报方法   总被引:3,自引:2,他引:1  
在原苏联"方尾图谱"重分析和改进的基础上[1],基于兴波阻力的薄船理论与船模试验数据的结合,提出用兰金(Rankine)体的波幅函数代替实际船型的波幅函数,以确定双体船片体间的阻力干扰因子,从而计算得到双体船的兴波阻力.整个计算过程直接使用Microsoft Excel,对新方尾单体船电子阻力数据执行查值和进行主要影响系数的修正计算,粘性影响修正与总阻力计算;进行不同尺度的快速性方案比较,以及确定高速单体船或高速双体船的总阻力与有效功率曲线.通过WP60穿浪双体船一算例与船模试验结果的比较表明,该方法是一种实用、高效、灵活、便捷和可靠的计算方法.  相似文献   

6.
缪爱琴 《船舶工程》2014,36(4):17-20
渔政船是进行海上渔政监管与执法的专业船只,快速性是保证其顺利完成任务的关键因素。为了快速、准确地预报渔政船的兴波阻力,以Rankine源法和Michell积分法为基础,编制相应的数值计算程序,计算了某渔政船的兴波阻力,并将其计算结果与阻力试验值相比较,结果表明Rankine源法和试验值较为接近;再将Rankine源法与Holtrop法、Slender-body理论进一步地分析比较,发现对于高速渔政船来说,只要船体网格和自由面网格划分合理,Rankine源法在预报阻力方面优势更加突出。  相似文献   

7.
邹德生 《中国水运》2009,(10):36-37
简述了采用面元法计算船舶兴波阻力的原理,给出了Rankine源和Kelvin源两种格林函数的具体形式,并比较了两者的优缺点。最后以Wigley数学船型为例,总结出了一套完整的兴波阻力计算步骤。  相似文献   

8.
气垫船的兴波和兴波阻力   总被引:1,自引:0,他引:1  
李根林  孙永权 《船舶》1999,(1):54-62
  相似文献   

9.
10.
直/斜支柱SWATH的兴波阻力预报   总被引:3,自引:0,他引:3  
斜支柱小水线面双体船(SWATH)除具备常规SWATH优异的阻力及耐波性能以外,还具有优良的隐身性能,目前世界上唯一一艘斜支柱SWATH是美国海军建造的“Sea Shadow”号。本文针对一型直支柱SWATH和自行开发的一型斜支柱SWATH,以Noblesse的新细长船兴波阻力理论为基础,开发了一种新的算法,所预报的兴波阻力与试验结果吻合良好。本文的工作可用于直/斜支柱SWATH船型的开发和优化。  相似文献   

11.
12.
基于CFD的船舶阻力预报方法研究   总被引:2,自引:0,他引:2  
根据船舶阻力成分及预报方法进行分析讨论,提出基于CFD的方法进行船舶阻力数值预报。分别基于势流和粘性流理论对船舶阻力进行预报,将阻力系数与试验值进行对比。基于粘性流体理论求解获得船体的粘性总阻力及摩擦阻力,基于势流理论直接求解欧拉方程获得船体兴波阻力。通过对某油船在各航速下的阻力理论计算结果与船模试验值的比较表明,该方法计算速度快,经济性好,且预报精确度高,完全满足工程需要,可以在实际工程使用。  相似文献   

13.
基于泰洛标准组剩余阻力系数集[1],采用6种经典机器学习回归预测模型,随机抽取数据集不同排列组合作为训练样本和测试样本,以测试样本的真实值和预测值的均方误差和相关系数作为不同回归预测模型的评价指标。同时在其他参数相同的条件下,对4组不同宽度吃水比做线性插值,将所得剩余阻力系数与回归模型预报结果进行比较。结果表明,回归树在所选模型中对于泰洛标准组船舶阻力预报具有较高精度和较好的泛化能力,为以后船舶阻力预报近似模型的选择提供参考。  相似文献   

14.
高速排水型船舶兴波波形与兴波阻力的试验与数值研究   总被引:2,自引:0,他引:2  
魏泽  周利兰  高高 《船海工程》2012,41(5):23-25,30
为了更好地了解高速排水型船舶的兴波特性并检验数值计算方法的可行性,对不同水深下的高速排水型船舶的兴波波形及兴波阻力进行实验及数值研究。实验中的波形测量采用五道纵切法,数值计算采用基于NURBS的广义边界元法。比较不同方法求得的兴波阻力系数,与实验结果的比较表明,数值方法及计算是可行性的。  相似文献   

15.
高速方尾船兴波阻力的一种理论预报方法   总被引:1,自引:0,他引:1  
应用经典薄船理论,以Michell兴波阻力积分公式为基础,针对高速船的方尾船型特点,采用"虚长度"法,编制了方尾船兴波阻力的计算程序。即在方尾后增加一个虚拟附体以使尾部封闭,通过对NPL船模系列(包括3b,4a,4b,4c,5a,5b,5c,6a,6b,6c共10条船型)的文献数据进行分析总结,得到一个计算虚长度的公式;对代号分别为3b,4b,5b,6b的4种单体船型兴波阻力进行数值计算,并与文献中的实验数据进行比较。结果显示,本文方法具有较高精度,适合于工程上方尾船兴波阻力的快速预报。  相似文献   

16.
基于CFD的船舶船体总阻力预报方法   总被引:1,自引:1,他引:0  
为了对船体航行阻力大小进行预测,使得设计人员在设计阶段便能够对船身结构进行优化改进,以获得性能优良的船身结构。基于UG建立船身与水流相互作用的几何模型,并借助hypermesh环境对几何模型进行离散化,得到高质量的流体动力学计算网格。将船头前部网格作为入口边界条件,后部以及侧面网格作为出口边界条件,船身对称面网格作为对称边界条件,建立有效的有限元计算模型。采用Fluent求解器对有限元模型进行求解,设定最大迭代步数为100步。通过对求解过程中动力粘度、速度、压力等重要的动力学参数残差收敛情况进行监控,表明整个计算过程收敛,得到的计算结果与实际情况相符合。通过CFD计算,得到了船身周围水压分布情况,根据船身前后方向水压差以及船身截面积,计算得到了船舶航行阻力。  相似文献   

17.
以线性兴波阻力薄船理论Michell积分和科钦函数线性叠加原理为基础,采用正交切比雪夫多项式拟合片体横剖面面积曲线,得出单体船、三体船和五体船通用的线性兴波阻力数值计算公式。据此,对不同侧体位置布局的Wigley五体船算例的兴波阻力进行系统的计算,并分析侧体位置布局对五体船兴波阻力的影响规律。在此基础上,进一步应用遗传算法对五体船的侧体位置布局进行减阻设计,得到五体船在计算航速下的侧体位置布局减阻设计方案。研究表明,所提五体船兴波阻力线性理论算法以及侧体位置布局减阻设计遗传算法均有效可行。  相似文献   

18.
范井峰  李云波 《船舶》2015,(6):20-23
针对小水线面双体船型,基于Dawson法,通过船体局部网格快速划分迭代求解船体模型在不同航速下的兴波阻力、纵倾、升沉以及不同航态下的湿表面面积变化,并给出预报结果与模型试验结果的对比。  相似文献   

19.
本文用理论方法计算了兴波阻力和改良船型的型值。理论计算可分下列两种情况: (1)对基本船型的水线迭加曲线薄船函数以计算其对应的改良船型。 (2)对基本船型的曲表面迭加曲面薄船函数以计算其对应的改良船型。 本文利用C.C.Hsiung提出的用tent函数方法计算兴波阻力。用SUMT混合罚因子优化技术计算改良船型的型值。 本文以y=(1-x~2)(1-z~4)数学船型和Series 60实用船型为基本船型,用tent函数方法对它们进行了兴波阻力计算,并且与其它兴波阻力计算方法进行了比较。本文还以上述两种船型为基本船型进行了改良船型的计算,并且得到了与它们相应的理论改良船型。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号