首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正9.加热和冷却策略(1)高压蓄电池加热当车辆行驶或高压蓄电池充电时,VSC监测高压蓄电池的内部温度。保持该温度是为了确保蓄电池实现最佳的输出并保持尽量长的使用寿命。只有在车辆插入电源进行充电时,高压蓄电池才会得到加热。当电池温度低于20℃且冷却液温度低于22℃时,蓄电池加热将被激活。高压蓄电池加热回路示意图如图43所示,BECM会激活高压蓄电池泵、高压蓄电池加热器和隔离阀,从而将冷却液转移到加热器。这将会加热冷却液并  相似文献   

2.
正(接上期)三、新能源汽车暖风和空调制冷原理1.暖风系统原理新能源汽车的暖风系统与传统车暖风系统差别较大,传动汽车采用发动机冷却液热量进行取暖,而比亚迪e5暖风系统采用PTC水加热器进行取暖,该PTC水加热器自带水温传感器、高压互锁装置、IGBT温度传感器、电压采集、电流采集以及对应的自动保护程序。暖风系统储水壶的冷却液经电子水泵输送到PTC水加热器,经过加热的冷却液输送到暖风芯体,经鼓风机将暖风芯体周围的热量输送到驾驶室各出风口,暖风芯体的冷却液经回水管回到暖  相似文献   

3.
(接上期) 2.电动冷却液泵 电动冷却液泵驱动发动机冷却液流过HV部件周围,以便对其进行冷却.电动冷却液泵如图20所示,控制框图如图21所示.eRAD和eRAD逆变器中的传感器监测单元中的温度.来自eRAD逆变器的温度传感器输出经由HS CAN电源模式0系统总线传输至PCM.BISG和BISG逆变器的内部温度数据也被发...  相似文献   

4.
<正>(接2019年第3期)6.蓄电池电量控制模块(BECM)蓄电池电量控制模块(BECM)是电动车(EV)蓄电池的组成部分。如图14所示,蓄电池电量控制模块(BECM)位于BEM模块的下部,安装在BEM安装板上。BECM监控以下内容:(1)EV蓄电池模块蓄电池单元的电压;(2)内部EV蓄电池模块的温度;(3)高压(HV)互锁回路;(4)蓄电池电量模块(BEM)中不同点的高压直流(DC)电压;(5)BEM中的HVDCBEM电流传感器;(6)冷却液进口和出口连接中的EV蓄电池冷却液温度传  相似文献   

5.
<正>高压线束:高压线束是高电压、大电流的电缆,用于连接动力电池、高压液体加热器、集成电机控制器、PTC加热器、车载充电机总成、电动空调压缩机,如图29所示。高压线束从位于后排座椅下面的动力电池开始穿过地板下方连接高压液体加热器,沿着地板加强件侧,延伸到发动机舱内,连接集成电机控制器、PTC加热器、车载充电机总成、电动空调压缩机。  相似文献   

6.
正(接上期)(8)高压辅助系统VELITE6的高压辅助系统主要包括3套与温度控制相关的系统(图28),分别是:高压部件电子冷却系统、暖风系统、制冷系统。高压部件电子冷却系统用于对14V辅助电源模块、车载充电机、电机控制模块的冷却,其主要部件如图29所示,此冷却系统使用零件号为12378491的冷却液。高压部件电子冷却系统控制框图如图30所示,整车控制模块通过脉宽调制信号控制电子水泵冷却风扇的转速。暖风系统有一个独立的冷却液循环,由高压加热模块加热冷却液,为车辆的暖风系统提供热源(如图31)。注意使用与高压  相似文献   

7.
<正>后排空调操作单元如图63所示。车内的热源是一个8k W正温度系数(PTC)加热器。这会对水进行加热,使其通过热交换器将热量释放到车内空气中。传动系统的废热也可用来对车内进行加热。如果传动系统温度较高,PTC会串联至供给的废热。然后将两种能量的总和通过加热器芯子输出至流入的空气。预处理空调。  相似文献   

8.
<正>奥迪A8车FSI发动机热量管理系统是一种把发动机的热量进行最佳分配的电控调节系统,负责工作的是新研制的管理模块"热量管理系统"(ITM),它整体集成在发动机控制单元中。通过对热量的管理,使发动机处于最佳的工作状态,同时降低能量损失,系统会始终考虑加热和空调系统的需求,通过冷却液截流阀和电控节温器对冷却液的流量进行调节。1奥迪A8车FSI发动机热量管理系统的构成及主要元件结构  相似文献   

9.
<正>诊断:评估电子装置可通过评估温度信号检测到图谱控制式节温器和发动机冷却液切断阀中的机械故障,但无法识别哪个指定的部件存在故障。在执行诊断程序后,卡在关闭位置的节温器或发动机冷却液切断阀会导致在故障记忆中生成条目,如表2所示。热交换器的热量管理在以下过程中,冷却液将流过交换器:加热请求◆最强制冷请求◆热交换器切断阀:热交换器切断阀是在客户发出加热请求时通过空调控制单元打开的。发动机冷却液切断阀(在发动机尚未达到工作温度时处于关闭状态)可确保即使很短的时间  相似文献   

10.
<正>(接上期)7.高压电气分配高压电气分配如图24所示。I-PACE上的HV电路由HV部件组成,这些部件由一系列橙黄色的HV电缆连接在一起。来自HV蓄电池的HV电力直接供应至前后逆变器以及HVJB。在驾驶模式下,逆变器将HV直流电力输送至EDU;在再生制动过程中,逆变器将会接收三相电流。HVJB负责向HVCH、直流-直流转换器和EAC压缩机供应HV电力。该电路由一组不可维修的熔丝提供保护。HV蓄电池中内置了两个熔丝,一个用于电动驱动系  相似文献   

11.
车型:2010款新君威。故障现象:座椅加热器不工作。故障诊断:如图1所示,座椅加热开关在空调控制面板上,操作指令由空调面板通过数据线传递给座椅加热控制模块,同时开关上的  相似文献   

12.
<正>(接上期)8.风挡玻璃加热器(R22/2)为防止结冰和起雾,可对风挡玻璃进行加热。风挡玻璃加热器通过电源开关进行操控,开关信号由空调控制单元读取,然后空调控制单元计算规定的热量输出值,并将其通过LIN线传送至风挡玻璃加热器控制单元(N61),N61据此促动加热式风挡玻璃。此外,N61还监控加热式风挡玻璃的功能,并将相应的基本数据(例如:加热式风挡玻璃的耗电量、温度或短路情况)反馈至  相似文献   

13.
<正>一、高压系统部件概览(如图1所示)高压部分包括用于车辆驱动的不同部件和功能。一些部件还用于充电,另一些连接至加热与空调系统。OBC是将主电源电路的交流电转换为400V直流电的充电器,用于为高压蓄电池充电,以及在主电源电路充电期间为运行DC/DC、ELAC和HVCH提供电力。IEM是控制ERAD的逆变器。逆变器可在驱动期间将高压蓄电池的直流电转换成三相交流电,  相似文献   

14.
(接上期) 8.高压接线盒 高压接线盒(HVJB)如图9所示,HVJB包含以下部件: ①充电控制模块(BCCM); ②直流/直流转换器(DC/DC); ③HVJB及内部熔丝. HVJB接收来自HV蓄电池的HV电源并将电源分配给辅助HV部件.当车辆连接至电网电源进行充电时,HVJB还会接收来自BCCM的电源,将来自BCC...  相似文献   

15.
高压共轨柴油机高海拔热平衡模拟试验研究   总被引:3,自引:0,他引:3  
在内燃机高海拔(低气压)模拟试验台上,对某高压共轨柴油机进行了模拟高原环境的热平衡试验,研究了海拔高度和冷却液温度对柴油机整机热流量分配的影响。结果表明:随着海拔的升高,转化为有效功的热量以及排气带走的热量逐渐下降,冷却液散热量逐渐增大,其他热量损失大幅增加;在相同海拔下,随着冷却液温度的升高,转化为有效功的热量和排气带走的热量逐渐增加,冷却液带走的热量大幅下降,其他热量损失明显增大;当海拔大于3000 m 后各项热流量分配的增幅或降幅变化更加明显。  相似文献   

16.
正(接2019年第9期)2.加热器芯加热器芯如图14所示,加热器芯位于气候控制总成中。加热器芯是铝制单通道冷却片和管道式热交换器,沿气候控制总成的宽度方向安装。连接到加热器芯的2条铝管延伸穿过前舱隔板,并连接到气候控制冷却液回路。  相似文献   

17.
正一、电动驱动冷却液回路1.电动驱动冷却液回路概述捷豹I-PACE纯电动汽车采用了先进的热管理系统,热管理系统综合利用液冷方式、热交换器和增强型空调系统,其中还包含一个热泵流程。热管理系统不仅为驾驶员和乘客保持了舒适的环境,还用于恒定保持20~25℃的高压(HV)蓄电池理想工作温度,这可确保HV蓄电池以最佳效率进行工作,从而在所有条件  相似文献   

18.
正一、专用工具EN-51367凸轮轴定位器。二、拆卸程序(1)排空冷却系统。(2)拆下凸轮轴盖的更换。(3)拆卸前轮罩衬板的更换(右侧)、前轮罩衬板的更换(左侧)。(4)断开加热器进口软管快速接头(如图1中2所示),加热器进口软管(如图1中3所示)。(5)断开加热器进口软管(如图1中3所示)和暖风装置冷却液加热器(如图1中1所示)。(6)将发动机调整到汽缸1燃烧行程的上止点(TDC)位置。朝发动机旋转方向转动曲轴,直到标记(如图2中1、2所示)在一条线上。在曲轴扭转减震器螺栓(如图2中3所  相似文献   

19.
<正>(1)电动车HV蓄电池加热。HV蓄电池加热仅在充电之前或期间进行。电动车蓄电池加热的目的是以便充电。EV蓄电池的加热由蓄电池电量控制模块(BECM)基于以下条件确定:EV蓄电池荷电状态EV蓄电池模块中的温度传感器外部电源当EV蓄电池内部温度高于规定温度时,BECM将开始为EV蓄电池充电。外部电源将会通过有线车载  相似文献   

20.
正(接2021年第7期)3.冷却系统实现SPCCI一个主要因素是汽缸内温度,采用冷却液切换阀和电子节温器,使发动机启动后迅速升温。冷却系统布置如图44所示。冷却液切换阀由PCM占空比信号控制,63℃时开启。控制EGR冷却器和加热器芯参与发动机冷却液小循环。如图45所示。节温器63.5~66.5℃开始打开,电动节温器90℃开启,冷却系统整体循环如图46所示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号