首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
<正>随着我国新能源战略地位的不断提升,新能源车辆的研发也越来越受到汽车厂商的青睐与推广,目前混合动力汽车和纯电动汽车在市场上正在被逐渐的接受,成为继普通内燃机车之后,汽车在动力形式上的一大转变,而在混合动力技术领域早已颇具建树的丰田却有意在新能源汽车领域另辟蹊径,大力致力于氢能源燃料电池混合动力汽车的发展。燃料电池是一种将氢气中所具有的化学能直接转换成电能的电化学转换器,因此,它比其他发电过程具有更高的效率。氢作为能量载体在冷燃烧中与空气中的氧发生反应,从而产生电流。燃料电池工作时,没有运动部件,  相似文献   

2.
正(接上期)DC/DC转换器内置于逆变器中,并用一个内部控制线路操控。如图30所示,HV蓄电池从一侧与内部控制线路连接,内部控制线路控制晶体管。IGCT负责内部控制线路电源。14V直流电的输出通过AMD端子和100A(DC/DC)保险给辅助蓄电池充电,直流201.6V单向转换为直流14V,  相似文献   

3.
正(接上期)5.燃料电池堆燃料电池堆是通过氢气和氧气的化学反应发电的装置,安装在地板下面。利用氢气罐提供的氢气和从车外吸入的空气中的氧气,产生200V或更高的电压。燃料电池组使用单体电池发电,单体电池由一个电解质膜夹在隔板中组成,几百个单体电池连在一起产生高电压。  相似文献   

4.
正丰田Mirai四门轿车于2014年12月15日在日本正式上市是丰田汽车公司的第一款氢燃料电池汽车。丰田燃料电池系统将诸如燃料电池堆和高压氢气罐等混合动力技术与燃料电池技术相结合。燃料电池汽车有效地将发电所需的氢气和空气输送到燃料电池,产生电能,并利用电能驱动汽车的牵引电机。高压电零部件包括带电机的燃料电池空气压缩机、空调电动压缩机、燃料电池逆变器、燃料电池堆、燃料电池冷却水泵、燃料电池水泵与氢气泵逆变器、带电机的燃料电池汽车变速器和带转换器的逆变器供电。所有其他常规的汽车电气,如前大灯、音响和仪表都是由一个单独的12V辅助电池供电。在Mirai中设计了许多安全措施,以确保大约244.8V的燃料电池汽车镍氢动力蓄电  相似文献   

5.
<正>日本丰田汽车公司(Toyota Motor)根据美国环保局(EPA)公布的数据宣布,旗下Mirai续驶里程可达502km,超越目前任何一款市售省油车,包含该公司的普锐斯混合动力车。进军美国燃料电池汽车市场日本丰田汽车公司(Toyota Motor)根据美国环保局(EPA)公布的数据宣布,旗下Mirai氢燃料电池车在美国创下每1加仑氢气行驶107.8km和满电情况下最大续驶里程502km的纪录。超过了目前续驶里程最长的特斯拉Model S电动汽车,它的续驶里程为435km。在  相似文献   

6.
正(接上期)逆变器是一种把直流电转换成交流电或反之亦然的装置,为了使直流逆变产生交流,需要将4个不同的开关(图14),从S1到S4,按如下方式组合,改变开关的开/关时间可以相应的改变频率。驱动电动机需要产生正弦交流电压,产生正弦波形交流而不是矩形波形交流则需要持续改变电压以产生正弦波。如图15所示,当检测到所需输出电压(Vi)持续极短的一段时间时(Ts)。  相似文献   

7.
丰田THS-Ⅱ(TOYOTA HYBRID SYSTEM-Ⅱ)属功率分流型混合动力架构(图1),其关键部件是动力分配行星齿轮(Power Split Device简称PSD),在行星齿轮排中已知两根轴的转速就能确定第三根轴的转速(基于行星齿轮排的传动特性),类似的也可以由此确定三根轴之间的转矩关系(行星齿轮排杠杆扭矩受...  相似文献   

8.
高压接头的密封结构也被改变以降低成本。丰田FCHV-adv采用的O形圈密封结构,需要使用高成本的特殊材料,因为连续供给高压液态氢气后,高压接头的温度下降至-50℃。新开发采用了新的金属密封结构以减少部件数量,图17所示为高压接头结构。  相似文献   

9.
解析丰田燃料电池轿车Mirai高压储氢系统(上)   总被引:1,自引:0,他引:1  
丰田汽车公司于1992年开始开发燃料电池汽车(FCV: fuel cell vehicles),此后进行了许多项目研发,以期使这些汽车得到广泛使用.丰田FCHV-adv发布于2008年,采用的是燃料存储压力为70MPa的氢气罐,而不是35MPa的氢气罐.通过各种改善燃料经济性的措施,FCHV-adv的实际续航里程达到了...  相似文献   

10.
燃料电池混合动力汽车能量控制策略仿真研究   总被引:9,自引:1,他引:9  
燃料电池客车采用多动力源的动力系统结构,需对其能量流动进行有效的控制。文章探讨了动力系统驱动模式下的3种能量分配控制策略,以及在再生制动模式下的一种简单的能量回馈控制。在ADVISOR软件平台上建立了控制策略和整个系统的仿真模型,并基于性能评估函数对汽车性能进行了分析。仿真结果表明,再生制动可以提高整车燃油经济性达20%,与恒压和离线能量分配相比,在线能量分配下燃油经济性好、蓄电池SOC波动小,但要精确估计蓄电池SOC,可能使其性能比预期的低。  相似文献   

11.
2.3 THS一n系统控制2.3.1 HV ECU控制HV ECU是整车能量控制中心,它采用层级式管理,由其通过CAN(控制器局域网)总线统一协调和控制各个低端控制器,即发动机ECU、蓄电池ECU和制动防滑控制ECU,最下层则为各个执行器,即发动机、变频器、MGI和MGZ等部件,如图15所示。卜IVECt下  相似文献   

12.
13.
14.
利用Simulink软件,对电电混合燃料电池客车中的动力电池、氢燃料电池、电机等分别搭建模型,并利用能量流关系将这些模块耦合成整车动力系统模型进行所设计的能量控制策略的仿真分析.  相似文献   

15.
丰田混合动力是属于串并联的混联结构方式,发动机是以无级调速的方式来驱动车轮。发动机、电机、电池和车轮这四者之间的逻辑关系是:发动机驱动车轮和电机1;电机1和电机2给电池充电;电池供电给电机1来启动发动机;电池供电给电机2来驱动车轮;车轮驱动电机2发电。如图1所示,发动机、电机、电池、车轮这四者之间能有机的结合主要是靠动力分配齿轮组和变频器共同来实现。动力转换分配逻辑分析和变频器原理分析这两点是丰田混合动力系统的核心,掌握了主体那么整体就自然清晰了。  相似文献   

16.
车辆倒车时原则上仅由MG2为车辆提供动力,在充电状态正常时发动机是不工作的。如图11所示,这时MG2正向旋转,发动机不工作,MG1正向增速旋转但并不发电,因为如果MG1在增速状态下要是发电,那么MG2同时就会负载很大,MG2负载大了就会消耗HV蓄电池的能量,这并不划算。在车辆倒车时,如果电源控制模块监视的任何项目与规定值有偏差,MG1将被启动进而启动发动机,MG1从正向增速的空转状态要突然提高转速变  相似文献   

17.
燃料电池汽车因具有零排放、续驶里程长、燃料加注快和噪声低等优势,引起了国内外汽车产商的广泛关注,将燃料电池新能源汽车作为研发的重点,并推出了一些量产的燃料电池汽车。基于丰田Mirai燃料电池汽车,对其技术原理和核心总成部件进行了综述分析,并对燃料电池汽车的发展方向和关键技术问题进行了思考和建议,为读者提供了有益的参考和借鉴。  相似文献   

18.
《叉车技术》2008,(2):30
当丰田公司在CeMAT上首次展出燃料电池混合动力原型叉车(FCHV-F)时,不得不令人刮目相看。该叉车电机由两电容器和一个氢燃料电池供电。丰田汽车公司(TMC)把FCHV技术推广用于叉车,设法提高燃料电池系统的性能和  相似文献   

19.
口.巍. 1.1混合动力汽车的概念混合动力汽车(Hybrid EleetriC vehiez。,简称HEV)是在电动汽车(仅依靠电能驱动的车辆)上加人辅助动力单元,将电力驱动与辅助动力驱动结合起来,充分发挥两者各自的优势及两者相结合产生的新优势的电动汽车。电力驱动可采用直流电动机或三相同步  相似文献   

20.
(3)变频器总成。变频器的功用是将HV蓄电池的高压直流电转换为三相交流电来驱动MG1和MG2。此外,变频器也用于将电流控制(如输出电流或电压)的信息传输到HV ECU(混合动力汽车控制单元)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号