首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
韦景光 《公路》2023,(9):232-237
以某大跨径PC连续刚构桥为依托,通过ABAQUS软件建立模型并分析PC连续刚构桥箱梁腹板混凝土开裂原因及竖向预应力施加顺序对腹板混凝土开裂的影响,结果表明:腹板混凝土开裂原因之一在于箱梁悬臂节段数量增加引起腹板混凝土内竖向拉应力增大所致,竖向预应力的施加可限制腹板混凝土内竖向拉应力的发展;滞后张拉工艺中,由于竖向预应力的滞后施加,无法起到提前遏制腹板混凝土竖向拉应力发展,从而导致腹板混凝土开裂风险较高。将竖向预应力施加顺序调整至纵向预应力施加之前,能有效降低腹板混凝土主拉应力值,减小腹板混凝土开裂风险。  相似文献   

2.
预应力混凝土连续(刚构)箱梁桥设置竖向预应力筋是为了减少和控制腹板主拉应力、防止开裂,然而在设置了竖向预应力后,箱梁腹板开裂现象仍然普遍存在。竖向预应力难以达到设计要求是导致腹板开裂主要原因之一,该文主要在不考虑应力集中的前提下,研究竖向预应力孔道灌浆问题对竖向预应力效果的影响。对常张高速沅水大桥进行变截面箱梁腹板应力分析,得到竖向预应力孔道削弱对腹板应力水平的影响,并采用等效主拉应力增量法对腹板竖向预应力进行折减分析。该文研究表明:箱梁腹板竖向预应力孔道灌浆不理想,将会引起截面抗剪刚度、抗弯刚度及抗压刚度的削弱,从而导致主拉应力σzl增大及竖向预应力作用的折减,势必将对结构安全造成不利影响。  相似文献   

3.
大跨径预应力箱梁因其受力优势在福建山区高速公路得到广泛运用。大跨径预应力混凝土连续箱梁桥腹板裂缝的存在对桥梁结构的安全性、适用性和耐久性造成严重影响。竖向预应力的应用是提高大跨径预应力混凝土连续箱梁桥腹板抗裂性的有效手段。基于2次控制张拉竖向预应力在福建省某高速连续箱梁桥的应用实例,对竖向预应力钢筋张拉对腹板抗裂性的影响进行分析。  相似文献   

4.
为了探究配置竖向预应力筋的箱梁腹板开裂荷载的影响及开裂前后力学行为的变化,文章选择较小剪跨比λ=1.15的双悬臂计算模型,模型顶部充分施加纵向预应力,悬臂端分级施加集中荷载,直至腹板出现腹剪裂缝并展开,采用ANSYS建立实体模型,以不张拉竖向预应力、张拉120k N竖向预应力为例,进行结构仿真计算,分析竖向预应力张拉与否对腹板开裂及裂缝开展形态,开裂荷载、开裂前后结构应力、刚度的影响,并对腹板开裂前后竖向预应力筋应力重分配进行了数值分析,得出配置竖向预应力可以显著提高腹板抗裂性,影响裂缝发生及开展形态、提高腹板开裂后结构刚度。文章研究结论对箱梁腹板竖向预应力理论研究及设计具有指导意义。  相似文献   

5.
混凝土箱梁腹板竖向预应力分析   总被引:4,自引:0,他引:4  
对混凝土箱梁腹板竖向预应力进行研究。以不出现主拉应力和最佳应力比为界限,确定合理竖向预应力值的范围,并给出竖向预应力设计步骤。分析了腹板开裂与否竖向预应力与纵向下弯预应力2种布束方式的优劣。竖向预应力筋合理布置间距建议值为30~50 cm。  相似文献   

6.
通过分析目前桥梁箱梁腹板中经常出现裂缝的原因,说明现有的精轧螺纹锚固体系存在回缩量过大的缺陷,提出一种可行的能有效解决回缩量过大的锚固体系——钢绞线竖向预应力锚固体系,并对其张拉工艺、设备进行改进,使张拉操作方便可靠。钢绞线竖向预应力锚固体系能确保箱梁腹板中设计的预应力,能有效提高箱梁腹板的耐久性。  相似文献   

7.
为了更好的分析预应力混凝土箱梁桥腹板斜裂缝出现的原因,从现行规范中腹板竖向应力计算模式出发,通过理论分析和有限元数值模拟的方法,对多种因素作用下的腹板竖向应力状况进行了分析。研究结果表明:现行规范中腹板竖向应力计算模式与实际情况有较大差异,腹板竖向应力不仅与竖向预应力有关,还和纵向预应力的锚固、顶板横向预应力张拉、环境温度变化等因素有关。提出了腹板竖向更合理的应力计算模式。  相似文献   

8.
预应力混凝土连续箱梁不同布索方式对比分析   总被引:2,自引:1,他引:1  
从理论上对比分析了不同布索方式的优缺点,以某预应力混凝土连续箱梁桥为原型,通过数值计算对比分析了预应力损失对不同布索方式箱梁腹板主拉应力的影响.结果表明,在理论上取消下弯索,通过适当调整顶、底板索和竖向预应力筋来实现对腹板主拉应力控制是可行的;适当调整竖向预应力的大小,竖向+纵向布索方式混凝土强度提高系数优于下弯索布索方式;竖向预应力损失对竖向+纵向布索方式预应力混凝土箱梁腹板主拉应力的影响非常敏感.在实际工程中,竖向预应力损失50%后,竖向+纵向布索方式预应力混凝土箱梁腹板主应力的分布将劣于下弯索布索方式.  相似文献   

9.
考虑竖向预应力扩散影响的箱梁腹板预压应力计算   总被引:4,自引:3,他引:4  
刘钊  李鹏 《公路交通科技》2004,21(12):54-57
竖向预应力筋对箱梁腹板产生的竖向压应力计算,关系到腹板主拉应力计算和抗裂问题,现行桥梁设计规范有关预压应力的计算公式没有考虑预应力在锚下的扩散。本文从弹性理论的解析解出发,讨论竖向预应力下考虑应力扩散的箱梁腹板压应力计算问题,最后给出竖向预应力筋合理间距和扩散角的计算公式。  相似文献   

10.
大跨连续箱梁桥竖向预应力筋的优化设计   总被引:1,自引:0,他引:1  
设置竖向预应力钢筋是提高大跨预应力混凝土箱梁桥腹板抗裂性的有效手段。在常规方法基础上,提出一种新型竖向预应力钢筋的布置方式。通过调整预应力钢筋的倾斜角度,改善箱梁腹板受力状态,提高主拉应力方向的压应力储备。通过参数敏感性分析,优化钢筋倾角的合理取值范围。采用本文方法对某桥竖向预应力钢筋进行了优化布置,在预应力钢筋数量增加不多的情况下,主压应力储备明显提高。  相似文献   

11.
2004版桥规关于竖向预应力的计算公式实际是计算的平均竖向压应力,没有充分考虑到预加力的局部扩散效应。把竖向预应力作为不连续荷载,以傅立叶级数形式展开,导出竖向预加力作用下无限狭长矩形薄板竖向正应力弹性解析公式,该公式可用于预应力混凝土箱梁腹板竖向正应力的计算。  相似文献   

12.
连续刚构桥设计关键技术问题的探讨   总被引:3,自引:2,他引:1  
针对连续刚构桥箱梁混凝土开裂、跨中下挠、底板崩裂等病害,分析其产生的原因,提出一些防止病害发生的对策措施,主要有:腹板斜裂缝可以通过增加梁高、设置腹板下弯钢束及加强竖向预应力有效性来改善;跨中下挠可通过增加顶板负弯矩钢束、采用塑料波纹管和真空辅助压浆工艺、控制钢束张拉龄期及设置后期备用钢束来改善;底板崩裂可通过合理控制结构的预应力度、选择合适的墩身刚度、优化钢束配置、优化梁高变化规律、合理选择底板厚度与波纹管间距及设置防崩钢筋等来改善.  相似文献   

13.
钢筋混凝土结构一出现,裂缝问题就一直困扰着土木工程界,人们对裂缝的研究也从来没有停止过。从桥梁整体结构布置、低预应力技术应用、合理施工方法及施工工艺3方面进行裂缝控制研究,引入"弯高比"概念,提出低预应力方式控制裂缝的新理论,为大中跨度钢筋混凝土桥梁的裂缝控制提供一套行之有效的方法。通过实际运用和推广,效果良好。  相似文献   

14.
根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)和美国AASHTO LRFD桥梁设计规范提供的混凝土徐变系数和收缩应变计算公式,运用Midas/Civil软件对比分析了贵州赫章特大桥在不同阶段下预应力损失及其对主梁变形的影响。结果表明,按2种规范计算得到的预应力管道摩阻损失基本相同,由锚具变形、弹性压缩和预应力筋应力松弛引起的预应力损失,AASHTO LRFD规范计算值略大于JTG D62—2004,然而由于2种规范在混凝土徐变、收缩计算公式上的不同,按照AASHTO LRFD规范计算由混凝土徐变收缩引起的预应力损失和主梁变形较JTG D60—2004大。  相似文献   

15.
传统的工字钢梁通常由顶板、底板和中部的平腹板焊接而成,由于腹板承受较大的竖向荷载,极易出现弯曲变形,导致整体刚度下降,结构承载受到较大影响。为了改善这一情况,研究了波形钢腹板工字梁在竖向荷载作用下的弯曲特性,通过有限元分析、理论计算和试验研究,得出不同荷载值作用时相应的应变值和挠度值,并与普通工字梁进行对比。结果表明,波形钢腹板工字梁具有更大的抗弯极限承载力,能较大程度地改善传统工字钢梁挠度过大的问题。  相似文献   

16.
针对低回缩预应力钢绞线体系应用于箱梁腹板的应力场计算设计了矩形薄板试验,对预应力即时损失以及矩形薄板各截面竖向预压应力场进行了测试.根据箱梁腹板在竖向预应力作用下的受力特点,利用竖向局部荷载作用下弹性力学平面应力问题的解析解,用多项式拟舍得出应力扩散角、应力均匀度和名义应力度之间的计算公式.预应力损失测试结果表明,这种低回缩预应力钢绞线锚具的预应力即时损失值低于5%,从而证明了该体系应用于短索能有效地提高预应力效率,若应用于箱梁腹板能提高箱梁的抗剪可靠性.弹性理论计算结果与矩形薄板试验测得的竖向预应力作用下的应力场吻合较好,当扩散角a小于26.5.时,能保证各截面处于较高的应力水平和应力均匀度,表明了低回预应力钢绞线锚具应用于腹板竖向预应力时具有优越性.  相似文献   

17.
以南方某混凝土预应力刚构大桥为背景,对混凝土徐变理论以及该理论在桥梁预拱度设置中的应用进行了研究,并利用GQJS和桥梁博士软件,计算了该桥梁施工的预拱度。算例分析表明徐变对预应力混凝土连续梁桥变形的影响均不容忽视。  相似文献   

18.
为了分析悬臂浇注施工的预应力混凝土(PC)箱梁桥在梁段之间存在的竖向接缝对混凝土整体强度影响,通过2座实桥与室内模型梁的接缝混凝土强度测试和承载能力试验发现:在正常施工条件下,大部分接缝处混凝土强度与腹板一般位置相比存在一定折减,其主要原因在于接缝附近端部混凝土由于振捣比较困难,混凝土沉积不均匀,导致接缝处混凝土质量要比一般位置混凝土质量差;接缝处不同混凝土粗糙度对混凝土箱梁抗拉强度有影响,其开裂荷载比整体一次浇注模型梁有所降低.因此施工中必须控制其接缝质量,增加交界面混凝土粗糙度,以提高新老混凝土结合面的粘结性能.  相似文献   

19.
为了揭示预应力锚杆-围岩耦合时变效应机理,利用分布力模型获取耦合模型的弹性解,结合材料性质和维度效应选用符合锚杆和围岩的流变模型(锚杆选用一维Kelvin模型,围岩选用三维Burgers模型),求解预应力锚杆-围岩耦合模型在Laplace空间的解析解,通过Laplace逆变化便得到耦合模型的黏弹性解。探究锚杆预应力和流变模型的黏性参数对围岩应力、位移场和锚杆轴力的影响,并基于理论模型和数值模拟软件FLAC3D的二次开发,开展相应数值模拟,对比分析解析解和数值解,验证解析解的正确性。研究结果表明:解析解与数值解吻合程度良好,在隧道内壁处,锚杆支护力随着时间的增大逐渐减小,且锚杆预应力和围岩的黏性参数与支护效果密切相关,其中围岩的支护效果与锚杆预应力大小呈现明显的正相关关系;围岩的位移变化表现出明显的时间相关性,并且与锚杆预应力大小呈现负相关关系;当锚杆的预应力过大时,围岩位移不再随之显著减小,由此可见,施加于锚杆的预应力不应过大;围岩Burgers模型中第Ⅰ蠕变阶段黏性系数影响锚杆的初期支护效果,而后期支护效果主要受围岩Burgers模型中第Ⅱ蠕变阶段黏性系数影响,并且随着黏性系数的增大锚杆后期支护效果越好;锚杆的流变状态不受围岩黏性系数的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号