首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
针对某V型多缸柴油机,搭建了润滑系统压力测试平台,测试了机油温度40~115℃范围内,发动机转速800~2200 r/m in范围内,润滑系统各关键节点的机油压力、发动机阻力矩和机械损失功率,研究了机油温度对发动机润滑系统性能和机械损失的影响规律,并对极限工况下的润滑特性作出预估.结果表明:各转速下,随着机油温度的升高,润滑系统各关键节点的机油压力均降低,各关键节点间的机油压力损失也随机油温度升高而降低;在试验温度范围内,各关键节点中机油散热器的流阻和其随温度的变化率均最大;右排主油道压降大于左排主油道压降,二者差值随温度升高而减小.发动机机械损失功率和阻力矩均随着机油温度升高而降低,相同温度区间内发动机阻力矩的变化率随发动机转速增大而增大.  相似文献   

2.
文章通过对某型1.5升增压发动机润滑系统的优化过程的介绍,指出影响润滑系统功能的部分因素,通过对润滑系统油道结构及尺寸对优化,较少油路对机油压力损失造成的影响,最终提高润滑系统末端机油压力道效果。  相似文献   

3.
一、润滑系的构成CA6102发动机采用的是压力润滑与飞溅润滑复合的润滑系统。1.压力润滑系图1为CA6102发动机润滑系统简图。曲轴正时齿轮驱动机油泵7旋转,通过机油收集器3将机油送进整个润滑系。压力油经出油管和出油管总成分成两路,一路送至发动机右侧的离心式机油滤清器4,经滤清后直接回至油底壳;另一路送至发动机左侧的机油粗滤器10,经粗滤后进入气缸体上的主  相似文献   

4.
机油压力表是指示发动机润滑系统油压的仪表,与安装在发动机润滑系统主油道上的传感器配套使用.  相似文献   

5.
发动机润滑系统主要由机油池、机油泵、机油滤清器、机油限压阀及发动机油道等组成,该系统对发动机的曲轴、凸轮轴、气门摇臂等具有润滑、清洁、散热、密封作用。为充分发挥润滑系统的上述作用,使用中应做到以下3点:正确选用机油。应按照汽车使用手册说明,选用规定牌号的机油,严禁使用劣质机油。适时检查机油量。机油量不足,供油效果变差,润滑不良,机件磨损加快,严重时会烧损曲轴、连杆轴承和活塞。在行驶过程中,应注意经常观察机油压力表或机油压力指示灯(报警器),了解润滑系统的工作情况。如果机油压力表指示压力过低或指示灯闪亮时,应立…  相似文献   

6.
1对润滑系统要多角度审视发动机的润滑系统不仅起润滑机件和减轻磨损的作用,而且会对液压挺柱、CVVT(连续可变气门正时系统)等配气机构产生重大影响。CVVT能否正常工作,除了取决于电控单元外,还与润滑系统的工作状况有关。在发动机维护中,既要定期更换机油和机油滤清器,每2万km左右还需要清洗VVT机油滤清器。如果机油压力过高,将使液压挺柱  相似文献   

7.
引擎寿命除设计因素外,润滑系统对汽车发动机的正常工作起着举足轻重的作用。 润滑系统主要由油池、机油泵、机油滤清器、阀门装置及铸于发动机体的油道组成。润滑系统具有润滑清洁、散热和密封四大功用。当然,机油系统必须有了机油才能发挥四大作用,因此,机油是润滑系统中的主角。  相似文献   

8.
众所周知,除了机油泵的泵油能力外,油道、滤芯和润滑部位的间隙、机油的粘度等都会影响机油压力。发动机工作时必须保持正常的油压,汽车行驶时油压一般应保持在0.2~0.5MPa,怠速运转时油压应不低于0.1MPa。机油压力过低,会破坏发动机的润滑条件,造成润滑、冷却和清洁不良,引起零件粘着磨损。  相似文献   

9.
<正>众所周知,除了机油泵的泵油能力外,油道、滤芯和润滑部位的间隙、机油的粘度等都会影响机油压力。发动机工作时必须保持正常的油压,汽车行驶时油压一般应保持在0.2~0.5MPa,怠速运转时油压应不低于0.1MPa。机油压力过低,会破坏发动机的润滑条件,造成润滑、冷却和清洁不良,引起零件粘着磨损。  相似文献   

10.
机油压力表是指示发动机润滑系统油压的仪表,它与装在发动机润滑系统主油道上的传感器配套使用。常用机油压力表与传感器多为电热式。电热式机油压力表的结构和电热式油量表相同,只是刻度盘不同。电热式传感器外形是一圆盒,由膜片、加热线圈、双金属片、一对触点、校正电阻等组成。传感器固定孔与发动机润滑系的主油道或机油粗滤器相通,是利用双金属片受热变形产生的脉冲电流而带动机油压力表工作的传感器。 当电路接通后,电路为:蓄电池正极→机油压力表接线柱→加热线圈→传感器接线柱→加热线圈(校正电阻)→双金属片触  相似文献   

11.
车用发动机润滑系统最低润滑油供给量研究   总被引:1,自引:0,他引:1  
以某1.8VVT发动机为研究对象,建立了发动机润滑系统计算模型和轴承动力学模型,对主油道压力、轴承处润滑油流量、轴承轴心轨迹、最小油膜厚度等参数进行了计算分析。通过计算轴承、凸轮和VVT系统等润滑系统关键部件的润滑油压力需求,获得了润滑系统在不同发动机转速下的最低润滑油压力,该计算结果可为润滑系统设计提供理论依据和边界条件。仿真计算结果表明:发动机润滑系统进油压力对轴承润滑的最小油膜厚度基本没有影响;原润滑系统供给润滑油的液压功率实测值超出理论需求值,最高可达72%,原润滑系统存在发动机中高转速工况下供油过量的问题。  相似文献   

12.
发动机作为汽车中最为复杂精密的机电一体部件,长时间处于高温、高压、高磨损运行工况,且需要满足长寿命、高效率、低能耗、强动力、低污染等一系列标准指标,而汽车发动机运转时零件间的摩擦以及燃烧等产生的颗粒都会对其性能造成恶劣影响,所以润滑对于发动机性能提升尤为重要。综述当前汽车发动机润滑机理,分析润滑油在使用过程中对发动机动力、油耗和排放的影响,并且在最后设想一种新的润滑机理,以弥补发动机的制造缺陷和颗粒的影响,改善汽车发动机的关键性能。  相似文献   

13.
发动机润滑系统的研究与进展   总被引:1,自引:0,他引:1  
指出良好的发动机润滑系统对于保障发动机可靠工作有着十分重要的作用,对润滑系统的研究现状以及主要研究内容的进展情况进行了简要回顾,介绍了在润滑系统中各部件、关键润滑部位以及润滑油路中流动状况等方面的研究情况。对经验设计法、网络法和外部特性法等3种润滑系统设计研究方法进行了介绍,并对这些方法存在的问题及相应的解决措施进行了初步探讨。  相似文献   

14.
直线度误差对活塞销轴承润滑性能的影响   总被引:1,自引:0,他引:1  
基于Reynolds润滑方程和油膜厚度方程,研究了直线度误差对轴承润滑性能的影响,建立了轴向几何型线的数学表达公式;针对某高速大功率柴油机,建立了详细的单缸计算分析仿真模型;研究了锥形、喇叭形、桶形和三角形误差对活塞销轴承的最小油膜厚度、最大油膜压力、轴瓦最大摩擦力矩、平均摩擦功损失以及油膜温度变化曲线和温度场分布的影响规律.研究结果表明:不同活塞销直线度误差的素线形状对轴承润滑性能的影响不同,素线形状的极值点位置对活塞销动态特性和轴承润滑性能的影响较大,素线曲率的影响要小些;使活塞销素线形状失去对称性,或使活塞销刚度减小的误差,对轴承润滑不利,有导致衬套脱落、烧蚀的危险.  相似文献   

15.
根据某1.8 L汽油机润滑系统结构参数和发动机运行参数,分析了曲轴主轴承、连杆轴承和凸轮轴承端部各处所需机油最小流量及对应的最小压力,确定了发动机正常运行需要的最小机油压力和最小机油流量以及对机油泵参数的要求。通过计算分析证明了润滑系统设计是合理的。  相似文献   

16.
建立某V8增压柴油机曲轴轴系动力学与轴承油膜动力润滑耦合仿真模型,并通过相应试验数据进行校核。通过耦合仿真计算获得各质量点扭振角位移和共振频率,以及轴承载荷、轴心轨迹、最小油膜厚度、最大油膜压力、摩擦功耗等参数。结果表明,主轴承5润滑性能最好,主轴承4则最差。与不考虑油膜动力润滑的计算结果对比,自由端扭振角位移幅值降低9%,扭振附加应力最大降低10.8%。  相似文献   

17.
润滑油的作用就是保护内燃机免遭磨损损害,当内燃机在润滑油保护的条件下仍然受耐磨损损害,说明润滑油的的保护功能存在问题,阐述了润滑油不同粘度对内燃机的影响,分析了润滑油高,低温对内燃机损害的原因,揭示了目前改善润滑油高,低温技术存在的问题等。  相似文献   

18.
内燃机润滑系统管道压力分析与模拟   总被引:1,自引:1,他引:1  
针对 12缸高速大功率内燃机的润滑系统油道进行了详细分析 ,根据阻力损失的不同 ,设计了不同的计算模块 ,通过模拟网络管道 ,计算了内燃机润滑油的管压损失 ,通过计算对润滑系统油道压力降进行核算 ,并进行了润滑油管道优化设计。  相似文献   

19.
以某直列3缸汽油机为研究对象,利用 AVL EXCITE 软件建立了曲轴多体动力学仿真模型,通过台架试验,验证了该仿真模型的正确性,在此模型基础上分析了润滑油温度、供油压力以及润滑油种类对发动机曲轴摩擦功的影响规律。研究表明:指定条件下的曲轴摩擦损失功率仿真结果为106.6 W ,台架试验结果为102 W ,误差在5%以内,表明仿真模型具有相当的精度;当润滑油供油温度从40℃升高到110℃时,曲轴摩擦损失功率减小到最低,约为104 W ,当温度超过110℃后,摩擦损失增加,当温度上升到150℃时,摩擦损失功率达到140 W ,润滑条件急剧恶化;当轴承主油道入口压力从0.31 MPa 增加到0.4 MPa 时,曲轴摩擦功率减小约10 W ,且供油温度较低时润滑油供油压力对曲轴摩擦功率影响较大;曲轴摩擦功率随黏度的提高而增加,供油温度较低时,润滑油黏度对曲轴摩擦功率的影响较大。  相似文献   

20.
凸轮摇臂异常磨损的分析与试验   总被引:1,自引:0,他引:1  
从改善润滑条件和减少机油因窜气受污染的角度解决了凸轮—摇臂副异常磨损问题。在改善凸轮—摇臂副润滑条件方面,加强了机油冷却使机油温度得到控制,加大了缸头机油供油油路直径、提高了机油泵泵油能力,使凸轮—摇臂副的供油量和油压得以提高;改进活塞环和缸体结构减少窜气,加强了密封。计算及试验表明,采取这些措施后,凸轮—摇臂副异常磨损问题得到了解决。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号