首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为优化岩溶区嵌岩桩嵌岩深度的设计计算,根据岩溶区嵌岩桩承载特性,考虑岩溶区嵌岩桩桩岩侧阻力对总承载力的影响,在溶洞顶板发生冲切破坏的基础上,推导出了最佳嵌岩深度计算公式,并给出了溶洞顶板抗剪切、抗弯拉的验算方法。最后用工程实例对理论计算结果进行了验证,理论计算结果与工程实际情况吻合较好,对工程实践有一定的参考价值。  相似文献   

2.
岩溶区桩端下伏溶洞顶板稳定性分析研究   总被引:9,自引:1,他引:8  
在总结归纳岩溶区溶洞项板稳定性分析方法的基础上,针对目前桩端下伏溶洞顶板稳定性验算方法中存在的问题进行相应改进,在溶洞顶板抗冲切、抗剪验算中分别引入格里菲斯判据和莫尔判据,对抗剪验算全面考虑了桩端岩层剪切破坏和溶洞平面投影边缘处岩层剪切破坏2种破坏模式,对完整、无裂隙顶板采用圆形固支板模型验算抗弯稳定性,最后将该方法应用到桌公路大桥的溶洞顶板稳定性验算中,计算结果表明该方法简单、实用.  相似文献   

3.
李春 《中外公路》2019,39(2):28-32
根据上限有限元的基本原理,依托Matlab平台编制了有限元上限分析程序,将修正的Hoek-Brown屈服准则嵌入有限元计算程序中;引入参数k来表征溶洞存在对桩基极限承载能力的削减程度,探讨了土体自重、嵌岩深度、溶洞半径、桩与溶洞水平和垂直距离对桩基上限承载力的影响。结果表明:参数k随着土体自重、嵌岩深度、溶洞半径的增加而逐渐降低,随着溶洞与桩端水平距离、溶洞与桩端竖直距离的增大而非线性增大;从溶洞各参数对极限破坏模式的影响展开讨论,极限破坏模式主要有:溶洞顶板的冲切破坏,溶洞侧壁发生破坏,溶洞顶板冲切和侧壁的联合破坏,岩体的整体剪切破坏。最后,通过与无溶洞条件下桩端极限承载力对比,验证了该文所提方法的正确性。  相似文献   

4.
大直径深嵌岩桩侧阻力试验研究   总被引:1,自引:1,他引:0  
随着大跨度桥梁工程的建设和上部结构荷载的增大,在一些地区已出现嵌岩深度超过5倍桩径的深长嵌岩桩基.基于自平衡测试技术,根据青岛海湾大桥两根桩基的静载荷测试报告,对大直径深长嵌岩桩的桩侧阻力进行了研究分析,主要内容包括桩顶等效荷载位移曲线分析,桩周岩层侧阻力大小、桩周岩层侧阻力与位移关系、桩侧与桩端阻力分担比等.研究结果表明,该地区大直径深长嵌岩桩的桩顶的Q-S曲线主要是缓变型为主;从桩侧岩层摩阻力来看,勘探报告所提供的岩层极限侧阻力数值偏小;从桩侧、桩端阻力分布来看,在软岩地区嵌岩深度大小对承载力影响较大,嵌岩比越大,桩端分担的阻力越小.  相似文献   

5.
岩溶区桥梁基桩极限承载力的突变求解方法   总被引:2,自引:0,他引:2  
分析了岩溶区桥梁基桩极限承载力组成特性及桩端破坏模式,将其极限承载力分为桩侧土体极限侧阻力、嵌岩段极限侧阻力及端阻力3部分.其中,桩侧土体极限侧阻力由各土层极限摩阻力求和可得,嵌岩段极限承载力则引入Hoek -Brown岩石强度准则,采用岩体质量评价指标进行描述.而后,针对岩溶区基桩工程的特点,结合突变理论的基本概念,建立了岩溶区基桩的力学简化模型及其势能函数的表达形式,并导出岩溶区桥梁基桩桩端极限阻力的尖点突变模型的分叉集方程.在此基础上,根据下伏溶洞顶板失稳破坏条件,求解分叉集方程导得岩溶区桥梁基桩桩端极限荷载的表达式,由此提出了岩溶区桥梁基桩极限承载力的确定方法.工程实例对比分析表明该方法的可行性.  相似文献   

6.
利用数值模拟的方法对基桩穿越多层溶洞时溶洞参数变化(溶洞半径、溶洞间竖向相对距离、溶洞高度)对基桩承载特性的影响进行了深入分析,结果表明:溶洞半径在一定范围内变化,设计时上段与中段的岩层可以和下段岩层一起成为侧摩阻力的持力层,而当超过此范围,只有下段岩层可作为基桩侧摩阻力的持力层;上段岩层和中段岩层的厚度的变化,影响着侧摩阻力的发挥效果,对于上段岩层越接近溶洞力持力层,侧摩阻力减弱的越明显;溶洞高度增加减小了桩周与岩层接触面积,导致基桩侧摩阻力整体减弱,但下段岩层桩侧摩阻力均有所增强。  相似文献   

7.
依据国家电网路平—富乐500千伏双回线路新建工程中嵌岩灌注桩单桩竖向抗拔静载试验数据,分析了嵌岩灌注桩荷载传递性状和嵌岩段摩阻力发挥程度。研究结果表明:静载试验测得的强风化砂岩层中桩侧极限阻力是《建筑桩基技术规范》推荐值的2.4~2.6倍,同时测得极限状态下中风化砂岩层中桩侧阻力为635~770 kPa;嵌岩段桩身与岩层的相互作用应是摩擦力、黏结力、嵌固力的综合作用;试桩在达到极限抗拔荷载时,桩侧阻力有效发挥的嵌岩深径比为3.75,并不是嵌岩深度越大对提高抗拔承载力越有效。  相似文献   

8.
岩溶区桥梁桩基桩长确定方法研究   总被引:2,自引:0,他引:2  
张建华 《公路工程》2009,34(4):1-4,15
根据岩溶区桥梁基桩的工程特点,并考虑桩身转动时桩尖断面与基底岩接触面上产生的反力矩等对基桩的影响,提出了岩溶区桥梁基桩嵌岩深度的计算方法;在溶洞顶板抗冲切、抗剪验算中分别引入格里菲斯判据和莫尔判据,推导了岩溶区基桩下伏溶洞顶板稳定性计算新方法,并由此得出最小顶板安全厚度的确定方法.在此基础上,提出了如何根据地质钻探资料,确定岩溶区桥梁基桩桩长的计算流程,并应用于湖南省宁道高速公路,获得了较好的经济效益.  相似文献   

9.
岩溶桩基的应用随岩溶地区交通工程建设的快速发展而越来越普遍,如何评价桩端岩溶顶板稳定性成为岩溶桩基设计的关键问题之一,针对目前桩端岩溶顶板稳定性分析平面假设的不完善性,考虑溶蚀作用形成的溶洞所具有的空间形态特征进行岩溶桩基稳定性分析。首先,将基桩作用下的岩溶顶板分别简化为固支梁、抛物线拱、圆拱与固支双向板等承载模型,采用结构力学与双向板分析理论建立不同模型的桩端岩溶顶板抗弯最小安全厚度计算方法;其次,通过计算结果对比分析,揭示岩溶顶板最小安全厚度随矢高的变化规律;在分析岩溶顶板冲切破坏与剪切破坏形式的基础上,探讨桩端岩溶顶板破坏模式的控制因素及其影响规律,进而获得桩端荷载、石灰岩抗拉强度、溶洞跨度与矢高等因素对桩端岩溶顶板承载特性的影响规律;然后,基于溶洞钻孔探测所得地质勘查信息构建岩溶桩基稳定性分析流程,提出考虑溶洞空间形态特征的岩溶桩基稳定性分析方法;最后,通过工程案例具体分析桩端岩溶顶板最小安全厚度及其破坏模式随矢高的变化规律。研究结果表明:桩端岩溶顶板破坏模式不仅与溶洞跨度、桩径有关,而且与溶洞形态及其矢高也密切相关,此外,石灰岩抗拉强度对岩溶顶板稳定性的影响同样较大,详细全面的工程勘察资料能使桩端岩溶顶板稳定性分析结果更接近实际情况。  相似文献   

10.
以广清高速公路改扩建工程中的江高高架桥为例,依据地质状况存在岩溶的情况,分别对采用扩大基础、群桩(摩擦桩)基础和嵌岩桩基础进行对比分析,得出采用D180钻孔灌注嵌岩桩是本桥安全、耐久、施工方便的基础形式.并按竖向承载力和按基桩稳定性计算出嵌岩深度,采用顶板抗冲切厚度验算和顶板抗剪厚度验算得到需要的最小桩底持力层厚度.  相似文献   

11.
为了给出桩端荷载作用于不同位置溶洞的稳定性评价方法,首先,依据岩溶区桩基承载特性,不考虑桩身侧摩阻力的影响,将上覆土层等效为相同重度的岩层,建立简化计算模型。其次,将桩端荷载等效为一集中力,基于Mindlin解求得桩端荷载作用下半无限空间内的地层应力。再次,利用复变函数的方法求得溶洞在重力作用下的地层应力,其主要思想是通过映射函数将溶洞所在平面映射到单位圆外域上,根据边界条件对地层应力进行求解。最后,将桩端荷载作用下产生的地层应力与溶洞在重力作用下产生的地层应力进行叠加,从而得到桩端荷载作用在含有溶洞地层中的应力表达式,并在此基础上求得最大、最小主应力,同时引入Griffith强度破坏准则,对溶洞稳定性进行评价。结果表明:通过计算可得溶洞边界上的应力最为集中,因此在实际工程应用中,可对溶洞边界上关键点进行验算来判断溶洞在桩基荷载作用下是否会发生破坏;理论计算结果与工程实际情况吻合良好,为岩溶区桩端荷载作用下溶洞稳定性评价提供了一种新的、更为接近工程实际情况的理论计算方法;值得注意的是,所提计算模型是基于平面应变假定,不能考虑桩和溶洞之间的空间效应,因此该方法也只能考虑单个溶洞的影响,这些问题在后续研究中值得深入探讨。  相似文献   

12.
针对下伏溶洞顶板极限承载力问题,提出了一种计算下伏溶洞顶板极限承载力的方法。假定冲切体为一母线未知的旋转体,且破坏面与底面夹角为45°-φ/2,由极限分析法求出其母线表达式及溶洞顶板极限承载力计算公式。同时进行了下伏溶洞顶板及相应的基岩极限承载力室内模型试验,得到了1~5倍桩径的顶板厚度下溶洞顶板以及相应基岩的极限承载力,实测结果与本文理论吻合良好。研究表明:当溶洞顶板厚度为1~3倍桩径时发生冲切破坏,顶板厚度为4倍桩径时呈现冲切+撕裂复合破坏,顶板厚度为5倍桩径时,发生洞顶撕裂+桩端塑性复合破坏;同一跨径比条件下,溶洞顶板厚度为1~4倍桩径时,溶洞顶板的极限承载力随其厚度的增加呈线性增长,达到5倍桩径时溶洞顶板承载力与基岩基本一致。  相似文献   

13.
桥梁基桩设计时,应对基桩的嵌岩深度进行设计验算。根据静力平衡原理,建立了桥梁基桩嵌岩深度简化计算模型;并基于Hoek-Brown强度准则,推导了桩侧法向应力及侧摩阻力计算公式,据此提出了考虑水平荷载特性的桥梁基桩嵌岩深度计算方法。工程实例计算表明:理论计算方法得到的基桩嵌岩深度值比规范法偏大,二者之间的差别在20%左右,据此设计的桥梁基桩更加安全;经计算发现凤凰二桥75~#~106~#基桩的最小嵌岩深度均大于0.5,其中106~#桩需至少嵌入花岗岩当中0.776 m,可按本文计算结果将基桩嵌入岩层0.8m。计算方法可以为类似工程设计提供参考。  相似文献   

14.
为验证软岩地层的嵌岩桩设计承载力、实测桩周各土层发挥的侧摩阻力值和桩端阻力,采用自平衡静载试验技术进行现场试验。评估基桩的实际承载能力,取得嵌岩钻孔灌注桩随着荷载加大桩侧阻力和桩端阻力的发挥特性。  相似文献   

15.
通过引入德鲁克-普拉格屈服准则,研究路基下溶洞顶板安全厚度的计算方法,考虑了溶洞顶板受到路基荷载可能发生的冲切破坏等3种形式,提出了一种顶板安全厚度计算模型,并结合结构力学理论,得到了各种破坏模式下溶洞顶板安全厚度的计算表达式;最后结合工程实例进行验算,结果表明该方法可用于实际工程。  相似文献   

16.
岩溶发育地质中的嵌岩桩,由于溶洞的存在,其受力机理与承载特性非常复杂。利用ABAQUS有限元分析软件,分析研究岩溶发育地质中溶洞对嵌岩桩的承载特性的影响,设计了四种不同的数值模拟分析对比方案,得出了岩溶地质中嵌岩桩的不同承载特性及桩侧摩阻力和桩端阻力的规律性结果,能使桩基设计达到优化的目的。  相似文献   

17.
为进一步揭示溶洞的受力模式和变形破坏过程,根据勘察结果建立考虑地层分布、溶洞形状、溶洞位置等因素的模型,模拟路堤分层填筑的过程,采用力法、强度折减法分析溶洞受力模式及其对破坏的影响。通过预埋钻孔多点位移计监测路堤填筑过程中溶洞及其上覆土层的变形破坏过程,并建立数值模型重现其破坏过程。根据应力状态和Hoek-Brown强度包络线,将破坏形式划分为张拉破坏、拉伸剪切破坏和压缩剪切破坏,并分析顶板倾角和洞穴形状对破坏形式、变形及稳定性的影响。基于抗弯理论,推导路堤容许填筑高度的解析解,并根据地应力和拱效应进行修正。结果表明:弯拉应力在拱效应和地应力的挤压作用下减弱,导致溶洞顶板进入剪切塑性状态,而非拉伸塑性状态;由于未能考虑拱效应和地应力的挤压作用,以往按照简支梁假设计算的弯拉应力结果偏大;矩形溶洞的顶板受力状态以拉剪为主,而椭圆形溶洞的顶板由于拱效应受力状态主要为压剪,实际形状溶洞的稳定性介于二者之间;顶板倾角(25°以内)对变形和稳定性影响不明显,但溶洞顶板的受力模式由压剪变为拉剪;为防止岩溶失稳,应控制路堤填筑高度,但现行规范中厚跨比大于0.8的规定过于保守,抗弯估算法优于厚跨比评价法,但仍偏保守,考虑地应力和拱效应的修正抗弯估算法最接近工程实际和数值计算结果。  相似文献   

18.
嵌岩桩桩底沉渣对承载性能影响的试验研究   总被引:1,自引:0,他引:1  
为研究桩底沉渣对嵌岩桩承载性能的影响,开展室内模型试验。对试验数据进行分析,对比有、无沉渣的嵌岩桩的整体承载性能、桩端阻力及桩侧阻力的差别。结果表明:桩端沉渣严重影响嵌岩桩整桩的承载性能,有沉渣的嵌岩桩不仅极限承载力远低于无沉渣嵌岩桩,在相同荷载作用下,桩顶位移也远大于后者。桩端沉渣的存在不仅导致桩端几乎没有承载力,同时也严重影响了桩侧摩阻力的发挥,尤其是对桩端附近的摩阻力削弱较多。  相似文献   

19.
为探讨桥梁工程中高承台嵌岩灌注桩的屈曲稳定特性,假定桩侧地基反力系数呈非线性的幂分布,基于弹性地基梁理论建立桩土体系总势能方程,采用最小势能原理导得桩身屈曲临界荷载与计算长度统一法解答,并据此讨论了地基反力分布、桩身自重、桩侧摩阻力及桩顶自由长度等对桩身屈曲稳定的影响规律。工程应用结果表明,考虑地基反力的复杂分布时,桩身屈曲分析结果更趋合理。  相似文献   

20.
为研究桩端压浆后嵌岩桩的承载性能,对焦桐高速泌阳段2座桥梁中的2根试桩(Z1,Z2号桩)进行静载试验。静载试验采用自平衡试桩法,采用慢速维持的方式分别对Z1,Z2号桩压浆前、后进行加载,加载分15级进行。试验结果表明:压浆后嵌岩桩的承载力得到明显提高,提高幅度为33%~35.3%,说明在嵌岩桩中应用桩端后压浆技术是可行的,且经济效益非常显著;桩端后压浆技术对嵌岩桩承载性能的影响主要表现在提高桩侧摩阻力,无论嵌岩段或非嵌岩段的桩侧摩阻力均有显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号