首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
周维  于浩楠 《城市道桥与防洪》2021,(10):193-195,221
顶板厚度参数是影响正交异性钢桥面板-肋焊接接头疲劳性能的重要设计参数之一.以某斜拉桥钢桥面板为研究背景,利用Ansys有限元软件,通过变形特征确定了简化的节段模型尺寸,并在此基础上分析了顶板厚度参数对钢桥面板-肋接头疲劳应力的影响,分析结果可为相关研究提供参考.  相似文献   

2.
李行  潘军  唐雪松 《公路与汽运》2020,(1):106-109,138
为研究车轮横向分布对钢桥面板顶板-U肋连接处疲劳损伤的影响,以佛山平胜大桥为研究对象,通过数值模拟,计算各车型车轮荷载不同横向位置下顶板-U肋连接处的应力,采用英国规范BS5400计算该处的疲劳损伤度;建立车轮分布模型,计算车轮在车道不同位置的分布概率,提出考虑车轮横向分布的疲劳损伤计算方法。结果表明,顶板-U肋连接处的应力幅受车轮横向分布的影响范围较小,约为1.5 m,不必考虑多车效应;U肋损伤分布差异较大,U肋底板损伤比腹板损伤更严重;考虑车轮横向分布效应后,顶板-U肋连接处的疲劳寿命计算值提高69%,钢桥面板疲劳损伤分析中应考虑车轮的横向分布效应。  相似文献   

3.
钢桥面板在焊接过程中会产生较大的残余应力,严重影响其使用性能。为确定焊接过程中残余应力的大小,基于有限元软件ANSYS,建立了正交异性钢桥面板U肋节段模型,采用均匀体热源模型、半球状热源模型、双椭球热源模型三种不同的热源模型,通过生死单元技术,对顶板-U肋焊缝焊接过程进行了数值模拟,得到了不同热源模型下的焊接温度场。在温度场计算结果的基础上,采用间接耦合法,计算了各热源模型下的焊接应力场。对不同热源模型下的温度场和应力场计算结果进行了比较。结果表明:三种模型在温度场整体分布和应力场顺桥向与横桥向分布上基本一致,仅在纵向应力沿板厚分布上存在轻微差异。  相似文献   

4.
为了进行钢桥面板U肋焊接残余应力精确计算及影响因素定量分析,以星海湾跨海大桥钢桥面板U肋为研究对象,在ABAQUS有限元软件中,建立钢桥面板U肋局部模型,通过自编的Dflux子程序,进行双椭球热源的加载,模拟V型坡口焊的焊接过程,得到顶板与U肋板残余应力分布,从而研究顶板板厚与焊接坡口角度2种因素对U肋焊接残余应力的影响。结果表明:本文的分析方法得到的焊接残余应力计算结果与前人试验数据结果对比,两者吻合较好,本文分析方法有效;顶板与U肋板在靠近焊缝处都出现最大残余拉应力,且均超过材料的屈服极限;随着顶板板厚增大,顶板与U肋板的残余拉应力峰值增大;而随着坡口角度增大,顶板与U肋板的残余拉应力峰值则减小。  相似文献   

5.
采用有限元方法对我国常用的实腹式横隔板扁平钢箱梁钢桥面板结构进行了应力分析,研究了U肋-横隔板连接接头疲劳裂纹的产生机理及主要影响因素,并对几种常见的横隔板弧形切口形状及内肋式构造、底部固定式构造等新型构造的效果进行了比较.研究表明,传统构造4和新型内肋式构造21的受力性能较为理想,但普遍适用于不同疲劳裂纹形式、加载条件、横梁高度、制造工艺的最优构造形式并不存在,需要采用基于性能的方法进行U肋-横隔板连接接头疲劳设计.  相似文献   

6.
对钢桥面板整体模型进行了有限元分析。结果表明,顶板横向应力在横桥向的分布表现出类似弹性支承多跨连续梁的受力特点,且顶板横向应力基本全部为弯曲应力,膜应力很小,在顶板-纵肋连接处纵肋应力远小于顶板横向应力。顶板-纵肋连接处的应力纵向和横向影响线很短,疲劳验算可不考虑同一车辆轴重间的相互影响及多车效应。增加顶板厚度可大大降低顶板的应力幅,铺装层的完整性对钢桥面板十分重要。此外,还对该类型接头的疲劳分级及现行欧洲规范Eurocode和美国规范AASHTO LRFD的相关条款进行了分析。为考虑车辆荷载通过引起的非成比例多轴疲劳效应,轮荷载滚动加载足尺模型试验和分析方法需要进一步深入研究。  相似文献   

7.
基于热弹塑性有限元法,采用ANSYS软件,以镦边U肋与顶板连接处焊缝为研究对象,运用生死单元技术,模拟镦边U肋加劲钢桥面板的焊接温度场与应力场,并分析其焊接残余应力的大小与分布规律。结果表明:焊缝附近应力梯度大,存在较大的残余拉应力,拉应力峰值约为1.16f y;远离焊缝处,顶板存在0.23fy左右分布均匀的压应力,U肋最大压应力为0.09fy;设计时应考虑残余应力对结构性能的影响,尤其是疲劳问题。  相似文献   

8.
周维  于浩楠 《城市道桥与防洪》2021,(11):189-191,202
为系统探究纵肋与横隔板交叉细节的疲劳特性,以某斜拉桥钢桥面板为研究背景,利用ANSYS有限元软件,对2跨3纵肋节段疲劳模型进行了数值模拟.研究结果表明:当疲劳车轮载单侧前后轮中心线通过横隔板正上方时,纵肋与横隔板交叉细节的疲劳应力幅达到最大;在欧规疲劳车荷载下,围焊焊趾处疲劳应力幅为83.6 MPa,横隔板开孔圆弧线上的最大疲劳应力幅为120.2 MPa.  相似文献   

9.
以鄂尔多斯乌兰木伦湖区3号大桥正交异性钢桥面板为研究对象,参照日本《道路桥示方书》及美国AASHTO规范,采用Midas/Civil软件建立空间杆系模型进行第一体系分析,采用ANSYS软件建立空间板梁模型进行第二、三体系分析。结果表明:桥面板、U肋及大、小横梁的强度和刚度均在限值之内,且富余度较大;正交异性钢桥面板受力复杂,必须采用精细有限元分析;正交异性钢桥面板的强度和刚度均应重视分析,以充分了解结构的真实受力状态。  相似文献   

10.
为研究正交异性钢桥面板纵肋-顶板焊缝位置的疲劳裂纹扩展特性,以某钢箱梁斜拉桥为工程背景,基于线弹性断裂力学与扩展有限元方法,通过ABAQUS软件建立纵肋-顶板三维裂纹扩展模型,引入半椭圆初始裂纹,对焊根与焊趾裂纹尖端的应力强度因子进行分析.分析结果表明,在车辆荷载的作用下,纵肋-顶板连接细节的疲劳裂纹是以Ⅰ型为主导的Ⅰ-Ⅱ-Ⅲ复合型裂纹;裂纹在横向位于车轮正下方,纵向位于两车轴中间时,疲劳裂纹扩展趋势最大;在车辆经过裂纹附近2 m范围内时,应力强度因子在最值间波动,对裂纹扩展产生较大影响.  相似文献   

11.
为了深刻认识正交异性钢桥面板的疲劳特性,准确评估其疲劳抗力,对纵肋与顶板焊接细节进行了三维疲劳裂纹扩展模拟。提出了一种主要针对椭圆或半椭圆形疲劳裂纹的扩展模拟方法,采用相互作用积分法计算裂纹尖端处的应力强度因子K,作为三维裂纹模拟的基本参量。以青山长江公路大桥正交异性钢桥面板疲劳试验节段模型为研究对象,将纵肋与顶板焊接细节处的疲劳裂纹近似为单个半椭圆形裂纹,对其扩展过程进行三维模拟,通过试验结果验证了所提方法的有效性。在此基础上将初始裂纹分别设置于焊根和顶板焊趾,探讨了顶板厚度和U肋形式对于纵肋与顶板焊接细节疲劳裂纹扩展特性的影响问题。研究结果表明:所提出的方法能够准确模拟纵肋与顶板焊接细节疲劳裂纹的扩展过程,适用于其疲劳问题研究;增加顶板厚度能够有效改善纵肋与顶板焊接细节处的疲劳性能;相对于传统纵肋与顶板焊接细节而言,顶板与镦边U肋焊根和焊趾处的疲劳裂纹扩展特性和疲劳抗力没有显著差别,顶板与镦边U肋焊缝构造细节难以显著改善焊根和顶板焊趾处的疲劳性能;萌生于焊根并向顶板扩展的疲劳失效模式是控制传统纵肋与顶板焊接细节和顶板与镦边U肋焊缝构造细节疲劳性能的主导疲劳失效模式。  相似文献   

12.
为了分析正交异性桥钢面板中桥面板与U肋焊接部位应力分布规律,以宁波市象山港大桥钢箱梁为研究背景,利用Midas Civil及Midas FEA建立全桥整体及钢箱梁局部节段有限元模型,采用现行《公路钢结构桥梁设计规范》(JTG D64-2015)中的疲劳荷载车模型,依次计算焊脚处桥面板、U肋的纵横向应力及其应力幅,并与现场实测数据进行比较和分析。分析结果表明:疲劳正应力计算结果满足规范要求;疲劳荷载作用下,焊脚处桥面板、U肋纵向应力的交变循环作用对正交异性钢桥面板的疲劳寿命影响更为显著,而横向应力对焊脚处裂缝的产生及发展有一定影响;局部轮压对桥面板应力的影响较大,应以最不利布置(HX2)进行设计计算。  相似文献   

13.
为了研究正交异性钢桥面板U肋对接焊缝疲劳细节的疲劳性能,应用有限元软件ABAQUS建立了局部的钢箱梁节段模型。探讨了有限元模型中关注细节附近网格划分大小,以及疲劳荷载的加载方式对关注细节应力提取结果的影响,并确定了U肋对接疲劳细节的应力幅分析过程。研究结果表明:在确保与网格大小为0.5t时对比的精确度≥95%的情况下,U肋与横隔板连接处附近U肋网格大小最大可取2t;横隔板间U肋对接焊缝处的U肋网格大小最大可取8t;横向加载分析时,将疲劳荷载布置于U肋正上方、U肋间和U肋腹板上方的加载方式既简化了加载步骤,又能得到细节的实际最不利荷载位置;疲劳荷载加载分析时,钢桥面板盖板网格不大于100 mm,加载的荷载步不大于100 mm时可以得到比较精确的结果;对于U肋对接疲劳细节,正确的应力幅分析过程为:首先将疲劳车辆的双轴组纵向中心线与车道中心线相对应进行纵向加载,获得U肋对接细节取得应力最大值时对应的轮载纵向位置,然后在该纵向位置进行横向移动加载,确定U肋对接细节最不利的横向位置,最后在该最不利横向位置进行纵向加载获取纵向应力历程曲线,再通过应力历程曲线计算该细节的应力幅。  相似文献   

14.
为确定钢桥面板U肋与顶板双面焊连接相比单面焊连接疲劳性能的改善效果,以某实桥正交异性钢桥面板节段为对象,采用ANSYS软件建立有限元模型,计算不同工况下各疲劳易损部位的切口应力幅,并分析双面焊连接疲劳性能的影响因素。结果表明:U肋与顶板双面焊连接的最大切口应力幅比单面焊时减小19.1%,能有效提高U肋与顶板连接焊缝的疲劳性能;U肋与顶板单面焊连接的最不利疲劳易损部位为焊根,而双面焊连接的最不利疲劳易损部位变为外侧焊趾;焊缝未熔透间隙长度和高度对U肋与顶板双面焊连接疲劳性能的影响较小;增大焊缝和顶板夹角可显著降低双面焊连接的最大切口应力幅,提高U肋与顶板双面焊连接的疲劳性能。  相似文献   

15.
吴斌 《公路》2020,(12):21-25
为了适应桥梁焊接自动化、机械化、智能制造的发展需要,深入研究钢桥面板U肋熔透焊接技术,从焊接方法、焊接残余应力精确计算及影响因素定量分析,并通过建立正交异性钢桥面板局部有限元模型,计算车轮荷载下U肋对接焊缝的主应力,提取各测点最不利横向位置下的纵向应力分布,对比单轮单次荷载作用下的损伤度获得U肋对接焊缝的易损部位。研究出U肋全熔透技术,总结正交异性钢桥面板疲劳开裂的成因,阐明其疲劳特性,针对性提出焊接熔透要求,在提高熔透率的同时,增加疲劳强度,保障桥梁的安全使用。通过无损相控阵检测技术检查焊缝内部缺陷,解决了以往U肋焊缝检测难度大、定位不准、定性困难等技术问题。  相似文献   

16.
正交异性钢桥面板疲劳问题突出,纵肋与顶板焊缝处是其关键疲劳易损部位,研究该部位疲劳裂纹的扩展过程并确定关键影响因素及其效应,有助于深刻理解其疲劳损伤机理。建立正交异性钢桥面板疲劳试验节段模型的有限元分析模型,将纵肋与顶板焊缝焊根处的疲劳裂纹近似为半椭圆形裂纹,基于断裂力学实现其扩展全过程的三维数值模拟。在此基础上研究初始裂纹的纵向位置和初始裂纹形状对疲劳裂纹扩展过程的影响,阐明扩展过程中的疲劳裂纹的形状变化,以及疲劳裂纹关键部位应力强度因子幅值的变化规律。研究表明:对于典型的正交异性钢桥面板纵肋与顶板焊缝,在纵向一段范围内,初始裂纹的纵向位置对裂纹扩展的影响不大;初始裂纹形状对裂纹扩展的影响主要体现在裂纹扩展的初始阶段,经过一段时间的扩展之后,不同形状的初始裂纹将演变为相对稳定的形状;持续一段时间后,裂纹将逐渐变得较为扁长;疲劳裂纹在深度方向上扩展超过约顶板厚度一半时,最深点的扩展速率将会减慢;深度相同的裂纹,形状越扁长时越倾向于向深度方向扩展,越不扁长时越倾向于向长度方向扩展。  相似文献   

17.
复合钢混凝土桥梁在其使用周期中受交通荷载影响产生显著动态影响,此时焊接接头是桥梁最薄弱部位之一。采用热点应力法(HSM),对考虑车速和路面粗糙度的焊接变形疲劳接头进行了疲劳寿命评估,用实体单元模拟焊接接头,建立三维动态车—桥互动模型。考虑桥式车辆与路面粗糙度动力相互作用,考虑全局和局部的应力和对疲劳寿命的高散射动态放大效应。局部方法表明,详细的局部应力定义是评估现有道路桥梁疲劳性能的基础。此外讨论了年交通量增长率对疲劳寿命的影响。  相似文献   

18.
针对正交异性钢桥面板顶板-U肋焊缝疲劳开裂问题,提出在顶板表面粘贴小尺寸增强板材的疲劳加固方法.采用碳纤维增强复合(CFRP)板和钢板2种疲劳加固板材,开展钢桥面局部区域足尺模型疲劳试验,采用热点应力法分析加固前后顶板-U肋焊缝的疲劳性能,最后根据线弹性断裂力学和有限元计算分析,对比分析不同加固板材下焊缝裂纹扩展过程中...  相似文献   

19.
为了研究复杂应力场对焊接接头疲劳寿命的影响规律,针对不同倾角(θ=0°,15°,30°,45°)全熔透承载角焊缝十字形焊接接头,进行了轴向拉伸疲劳试验和有限元数值模拟。采用线性外推法、二次外推法和1mm法来计算焊趾处的热点应力,通过有限元网格敏感性分析确定合适的网格尺寸,得到了热点正应力和热点剪应力集中系数随倾角的变化规律。分别基于等效应力法、相互作用方程法和双参数临界面法对焊接接头的疲劳寿命进行评估,并与试验结果进行对比。结果表明:当最小网格尺寸分别小于0.1t和0.03t时,外推法和1mm法可以忽略其对热点应力的影响;热点剪应力集中系数普遍大于热点正应力集中系数;随着焊缝倾角的增大,疲劳寿命越来越大,15°,30°和45°倾角的疲劳寿命试验结果分别是0°倾角的1.26,1.52和2.38倍;当焊缝倾角为30°和45°时,相互作用方程法和双参数临界面法预测的疲劳寿命误差较大且偏于危险,而等效应力法预测的疲劳寿命与试验值吻合较好且偏于安全,因此推荐采用线性外推法计算热点应力,用等效应力法来预测复杂应力场下焊接接头的疲劳寿命。  相似文献   

20.
为研究钢桥面板主要构件参数取值导致的疲劳效应,以某公路大桥正交异性钢桥面板U形纵肋与顶板构造细节为研究对象,建立精细化板壳与实体混合有限元仿真分析模型,分析纵肋和顶板厚度变化及其匹配组合对于该构造细节应力历程、等效应力幅值和疲劳累积损伤的影响效应。结果表明:纵肋和顶板厚度均是影响其构造细节疲劳性能的关键性参数,但其厚度变化对于疲劳性能的影响具有一定的差异;在相同的构造参数下,相应于顶板焊趾和焊根2种失效模式的疲劳性能并不一致,相较而言顶板焊根位置具有更高的疲劳开裂风险;适当增大纵肋厚度可有效延缓纵肋与顶板构造细节的疲劳损伤累积过程,合理构造参数的确定应综合考虑经济性和制造工艺等因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号