首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
曾波  兰品万 《中外公路》2004,24(5):65-67
大体积混凝土施工时,由于混凝土的体积大,聚集的水化热大,在混凝土内外散热不均匀以及受到内外约束的情况下,混凝土内部会产生较大的温度应力。导致裂缝产生,为结构埋下严重的质量隐患。因此。大体积混凝土施工中的温度监控是控制裂缝产生的关键。文中介绍了岳阳洞庭湖大桥主墩大体积混凝土吊箱承台在设计和施工中对裂缝的控制情况。  相似文献   

2.
大跨径桥梁承台结构尺寸大,单次浇注混凝土方量大,为典型的大体积混凝土结构,施工中温度裂缝的产生将危害桥梁结构安全及耐久性。本文以清云高速公路西江特大桥2个主墩承台施工为依托,结合项目特点,针对大体积混凝土特征,对承台混凝土施工采用全过程温控,确保大体积混凝土不产生温度裂缝,保证了承台施工质量,为类似项目提供参考依据。  相似文献   

3.
大体积混凝土温控施工观测及分析   总被引:2,自引:0,他引:2  
大体积砼与一般的钢筋砼结构相比具有形体庞大、混凝土数量多、工程条件复杂、施工技术和质量要求较高等特点。大体积混凝土施工时遇到的普遍问题是温度裂缝。由于混凝土的体积大,聚集的水化热大,在混凝土内外散热不均匀以及受到内外约束的情况时,混凝土内部会产生较大的温度应力,导致裂缝产生。因此,大体积混凝土施工中的温度监控是控制裂缝产生的关键。总结介绍湛江海湾大桥主墩承台大体积混凝土的施工控制措施。  相似文献   

4.
王保华 《交通科技》2009,(Z1):18-20
阐述了大体积混凝土承台温度应力的基本作用原理以及温度应力在承台内部的分布情况,通过实例计算大体积混凝土在浇筑各阶段的温度变化和应力变化,分析施工阶段控制大体积混凝土承台裂缝应该注意的细节。  相似文献   

5.
随着科学技术的进步,新材料、新技术的广泛应用,桥梁跨度越来越大,大体积混凝土应用越来越广泛,承台混凝土体积越大,混凝土内部水化热聚集就越多,内外散热不均匀不一致,使混凝土内部产生较大的温度应力,导致承台混凝土开裂,给工程质量埋下了严重的质量隐患,因此,承台大体积混凝土设计、施工时如何降低混凝土内部温度,如何降低混凝土内外温差,防止裂缝产生是关键。本文结合临吉高速公路壶口黄河大桥主墩承台设计及施工要求,分析大体积混凝土裂缝成因和控制措施。  相似文献   

6.
巴东长江大桥5号承台控制裂缝的措施   总被引:2,自引:0,他引:2  
介绍了巴东长江大桥5号墩承台大体积混凝土施工中控制温度裂缝所采取的措施,进一步总结了大体积混凝土的施工经验。  相似文献   

7.
在特大承台大体积混凝土施工时,水化热的控制是施工的重点和难点,对工程质量有比较大的影响。文章以实际工程为例,对特大承台大体积混凝土水化热情况进行了分析,然后针对性地提出了温度控制措施,有效降低了承台内外部的温度差异,避免混凝土结构出现裂缝。  相似文献   

8.
大体积混凝土施工水化热及裂缝控制一直是桥梁基础施工质量控制难点之一,本文结合广东惠州市合生大桥主塔大体积混凝土承台和塔座的施工过程,详细介绍了一种水下大体积混凝土施工的工艺,探讨了水下大体积混凝土施工过程水化热和温差控制措施,通过对现场监测数据的计算与分析,将现场数据与设计和规范要求进行对照,从而实现以设计要求控制施工、施工监测结果反馈和优化设计,进而进一步指导施工的双反馈循环。  相似文献   

9.
通过对大体积混凝土产生裂缝的原因进行分析,结合禹门口黄河公路大桥主桥施工现场的实际情况和以往多个大体积混凝土项目的施工经验,提出了优化混凝土配合比初凝时间、对混凝土表面进行保温养护、控制混凝土浇筑温度等一系列措施。在第一个承台分层浇筑过程中,合理布置冷却水管,埋设测温元件,对整个施工过程进行全面监控,并整理分析测量数据,反馈施工过程中存在的问题,及时调整温控措施并运用到第二个承台施工中,有效控制了禹门口黄河公路大桥主桥大体积承台混凝土有害裂缝的产生。  相似文献   

10.
大体积混凝土承台具有结构厚、体形大、钢筋密、混凝土用量多、工程条件和施工技术要求高等特点,除了必须满足强度、刚度、整体性和耐久性要求外,还必须控制温度变形裂缝。海上深水桥梁基础大体积承台在此特点的基础上,受海洋环境的影响,其施工工况更加复杂化。本文依托平潭海峡大桥实体工程,提出了承台施工过程的主要施工工艺,对钢套箱施工、封底混凝土施工、大体积混凝土浇注及温控等关键技术进行了系统的研究,研究成果可以指导今后同类工程大体积承台混凝土的施工。  相似文献   

11.
王英君  陈彦君  赵喜强 《公路》2003,(11):20-23
松花江大桥承台体积约3700m^3,又恰逢冬季施工,如何实现冬季施工的大体积混凝土温度裂缝的有效控制,是施工的关键。施工中采用了“内降外保”等技术,实现了温度控制、裂缝控制的目标,实体工程质量优良,达到了施工预期效果。  相似文献   

12.
承台大体积混凝土水化热分析与施工控制   总被引:5,自引:0,他引:5  
结合援孟加拉国中孟友谊六桥主桥承台设计与施工,利用Midas/Civil有限元计算分析软件对承台大体积混凝土水化热进行仿真分析,掌握水化热变化规律及其应力影响,据此指导现场施工控制。结果表明:仿真分析很好地反映了水化热变化规律及其应力影响,混凝土质量优良,没有出现温度裂缝,可供类似大体积混凝土设计与施工借鉴。  相似文献   

13.
杭州湾跨海大桥北航道桥斜拉桥承台混凝土温度裂缝控制   总被引:3,自引:1,他引:3  
斜拉桥承台一般均为大体积混凝土,因水泥水化热的作用,承台内外温差过大,易使混凝土出现早期温度裂缝。杭州湾跨海大桥主跨承台混凝土浇筑分层均较厚,为3~4.5 m,在承台施工中采取了行之有效的温控措施,有效地控制了温度裂缝,确保了承台混凝土的耐久性。  相似文献   

14.
泸州长江大桥大体积混凝土裂缝控制技术   总被引:2,自引:0,他引:2  
许超英 《桥梁建设》2002,(4):53-55,58
结合隆纳铁路泸州长江大桥承台大体积混凝土施工,从原材料选用,配合比优化设计及混凝土养护方面介绍大体积混凝土裂缝的控制方法。  相似文献   

15.
杨勇  彭昆 《公路与汽运》2020,(1):102-105
珠海市洪鹤大桥3#主墩承台平面尺寸为43 m×17 m,高6 m,承台砼浇筑量为4386 m^3,在30℃左右的高温季节进行施工。为确保承台大体积砼的施工质量,避免大体积砼结构产生温度裂缝,对承台大体积砼温度进行监测,发现承台第一层砼的施工温控指标超过规范建议值;针对其产生原因进行温控措施调整,并将调整后的温控措施应用于承台第二层砼施工,达到了较好的温控效果。  相似文献   

16.
《公路》2015,(9)
随着桥梁施工建造技术的不断发展,建造特大型桥梁所涉及的大体积混凝土承台施工也越来越多,如不采取措施控制水化热,混凝土内部温度将急剧升高,势必会产生温度裂缝,严重影响工程质量,因此,需要通过采取分层浇筑、优化配合比设计、模拟承台混凝土水化热计算、控制混凝土入模温度和冷却水循环等针对性措施对混凝土内部温度进行有效控制,使混凝土内部温度的变化在允许范围内就显得尤为重要。针对某特大桥(斜拉桥)主塔大体积混凝土承台施工的实际情况,从混凝土施工温度控制方面进行了分析和介绍,以为同类型大体积承台混凝土施工提供可资借鉴的参考。  相似文献   

17.
崖门大桥12#、13#主墩承台长30.5m、宽21.8m、高6.5m,承台设计为高桩承台。介绍大体积混凝土承台施工中承台封底质量、承台混凝土质量及大体积砼水化热的控制等。  相似文献   

18.
文章结合江苏江海高速公路如海运河大桥系杆拱主桥承台大体积混凝土施工,从原材料选配、配合比设计、混凝土施工工艺以及混凝土养护等方面介绍大体积混凝土裂缝的控制方法及温控措施。  相似文献   

19.
《公路》2017,(5)
桥梁大体积混凝土承台,水泥凝结时,会产生大量的水化热,由于混凝土是绝热材料,因此产生的水化热不能及时释放,导致大体积混凝土内部温度不断升高,形成混凝土的内外温差,当温差过大或升降速度过快时,混凝土就会出现温度裂缝。温度裂缝的产生会降低承台基础的承载能力,降低混凝土的耐久性,造成桥梁安全隐患,危害极大。通过银百高速公路(G69)建设项目甜永段无日天沟特大桥承台大体积混凝土水化热的温度控制实例,分析和研究大体积混凝土设计、实时监测混凝土在施工、养护期间,沿承台长度、高度和宽度方向的混凝土温度变化状态,实行信息化控制,及时优化设计方案、调整保温及养护措施,使混凝土温度梯度和温度增量不致过大,有效控制有害裂缝的产生。  相似文献   

20.
武汉军山长江大桥索塔承台大体积混凝土施工   总被引:1,自引:0,他引:1  
潘中明  郑俊杰 《公路》2002,(7):79-81
武汉军山长江大桥主塔承台大体积混凝土施工破常规一次性浇筑,且承台施工质量良好,以一次性浇长大体积混凝土施工控制进行了简要总结。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号