首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大跨煤棚结构对风荷载较为敏感。针对封闭双煤棚进行了刚性模型测压风洞试验,研究了并列双煤棚在3种不同间距比L(L=0.125、0.250、0.500)情况下,结构表面测点的风荷载体型系数分布规律,给出了双煤棚最适宜布置方式及最不利风向角。研究发现,煤棚并列放置时随着间距比的增大,目标煤棚受到干扰煤棚的影响逐渐减小;风向平行于长轴为最不利风向角,此时狭管效应占主导地位;风向垂直于长轴为最有利风向角,遮挡效应起主导作用;煤棚并列放置且间距比L=0.125时,目标煤棚的体型系数均在规范要求范围内,考虑到节约场地,煤棚可保持间距比L=0.125放置。  相似文献   

2.
针对高速铁路封闭式声屏障在列车风与横风作用下的风压荷载问题,采用中南大学自主研发的横风-移动列车风洞试验系统,研究横风和列车风作用下声屏障的风压荷载分布.研究结果表明:圆形断面封闭式声屏障外壁风压系数分布沿环向先减小后增大,与单圆柱的风压分布大致相似,给定风速下最大负风压系数-3.38;单车通过声屏障时脉动风压幅值与车速平方近似成正比,同一截面风压沿环向非均匀分布,近侧的压力峰值高于远侧,最大相差16%;2车交会时,交会区域风压峰值明显增大且极值风压出现在交会截面,其值约为单车通过时极值风压的2倍.  相似文献   

3.
以某发电厂气膜煤棚为研究背景,为研究风向角和周边建筑对气膜煤棚风荷载特性的影响,采用风洞试验的方法测试并分析了气膜煤棚体型系数和整体力系数的变化规律。结果表明,无周边建筑下,煤棚的最大正体型系数在迎风面的底部,最大负体型系数在迎风面两侧拐角处,最大整体力系数发生在75°~90°和270°~285°风向角之间。煤棚在长度、跨度和竖直方向上最大整体力系数分别为0.44、0.63、1.26,周边建筑干扰效应使煤棚迎风面底部体型系数减小,在一些风向角下煤棚所受整体力系数甚至表现为显著的放大效应。  相似文献   

4.
通过某长宽比为5.1∶1的大跨度钢网架双坡屋面结构刚性模型风洞测压试验,得到了结构在不同风向角下的风荷载体型系数,研究了该结构体型系数分布规律、脉动风压系数分布规律以及结构内外表面风荷载分布规律,依据体型系数的不同对结构表面进行了分区,给出了各区域的代表值。结果表明:结构边缘一定宽度范围内,体型系数受流体分离影响较大,其余区域所受影响较小且随风向角变化不明显;结构迎风端脉动风压系数较大,其余区域较小;结构周边建筑对结构体型系数、脉动风压系数、内压系数分布等有一定影响,设计中应考虑周边建筑对结构风荷载的干扰效应。  相似文献   

5.
针对利用屋顶铺设光伏太阳能板的光伏发电项目中,光伏太阳能板对屋顶风荷载的影响问题,采用刚性模型测压试验,得到安装光伏太阳能板屋顶的风压和未安装光伏太阳能板屋顶的风压。分别计算两种情况下屋顶风压系数均值、风压系数正向极值、风压系数负向极值以及屋顶局部体型系数。结果表明,安装光伏太阳能板对屋顶整体风荷载的影响不大,但增大了局部的最强风吸力;安装在屋顶的太阳能光伏板体型系数随位置变化不敏感,取值均在正负0.2之间。  相似文献   

6.
车站无站台柱雨棚风荷载设计探讨   总被引:1,自引:0,他引:1  
通过对系列无站台柱雨棚风洞试验结果的对比研究,得出无站台柱雨棚风荷载作用特点及规律,根据研究结果得出具有指导性意义的无柱雨棚风荷载设计结论。通过研究表明,雨棚的边缘部分极值风压系数要高于其他区域;雨棚的横断面形状对平均压力系数影响较大;并根据研究结果,提出雨棚设计中风荷载体型系数参考取值和风荷载作用下雨棚的结构布置建议,供类似无站台柱雨棚工程参考。  相似文献   

7.
为掌握大跨人行悬索桥纵横主梁涡振性能,以国内拟建的一座宽跨比为0.028 4的人行悬索桥为工程背景,对其涡振响应特性及发生机理进行了研究。采用数值方法分析了该主梁涡振响应、流场涡脱演化、风压分布以及涡激振动贡献系数在-3°、0°和3°风攻角下的特性。结果表明,随着风攻角由正转负,主梁竖弯涡振性能变差,其风速锁定区间向低风速区偏移,最大竖弯涡振幅值增大,最不利扭转涡振出现在0°风攻角下。由于主梁下表面多个工字钢纵梁的阻挡作用,导致主梁下部气流旋涡运动状态复杂,其对涡振响应影响显著。脉动风压系数随风攻角的变化规律复杂,主梁上、下表面脉动风压系数极值分别出现在-3°和3°风攻角下。不同风攻角下,主梁上、下表面的涡激振动正贡献系数极值均出现在尾流端且作用范围较大,此为结构竖弯涡振响应的主要贡献区域。  相似文献   

8.
基于盐城火车站无站台柱雨棚风荷载的风洞试验结果,选取典型风向角,研究了平均风压系数和脉动风压系数的分布特性,指出雨棚表面基本为负压控制,且边缘部分压力系数较大。该项研究为进一步探讨无站台柱雨棚的风荷载特性和结构抗风设计提供了依据。  相似文献   

9.
针对中铁渤海铁路轮渡码头汽车栈桥的高位锁定形态,运用大型计算流体动力学软件CFX,数值模拟不同侧风条件下汽车栈桥的三维外流场,研究不同风速及不同风向角条件下高位锁定形态栈桥的风荷载.结果表明:在同一风速下,风向角对高位锁定形态下栈桥所受的风压极值影响较小;处于高位锁定形态的栈桥,在10~30 m·s-1风速下,风向角为45°时水平来流产生的合力最大,因此,应按照45°风向角时水平来流所产生的最大合力且考虑扭转力矩,进行汽车栈桥高位锁定形态下的设计计算;不同风向角时,高位锁定形态下栈桥所受横向风力、竖向风力、扭转力以及风压均随风速的增大而增大,且与风速的平方成正比,这与水平形态桥梁结构的规律相同.  相似文献   

10.
对北京南站雨棚结构模型进行风洞试验,研究了不同风向角下雨棚表面的最大正压力分布和最大负压力分布,同时分析了位于高湍流区域的大跨屋盖的平均风压分布特性。研究结果表明,负风压主要发生在迎风角区,但在下风向会出现正压力。  相似文献   

11.
介绍风速时程模拟方法,特别针对谐波合成法进行论述。以赤石特大桥为例,采用Fluent软件进行-4°~4°攻角范围内特定截面的三分力系数模拟分析,结果表明,当攻角为1°时,阻力系数最大。根据现场采集的风速样本,针对5号塔进行抗风时程分析,研究结果表明:采用不同的计算标准,动力系数结果并不一致,甚至当以横桥向弯矩为标准,脉动风荷载作用下索塔没有表现出动力放大效应;在桥面脉动风荷载作用、塔顶脉动风荷载作用下,塔顶的最大位移、索塔底部最大应力均在容许范围之内;索塔横桥向刚度远大于顺桥向,抗风分析应以顺桥向为主;采用不同的标准计算动力系数结果不同,进行拟静力分析时建议采用动力系数的最大值。  相似文献   

12.
研究目的:铁路无站台柱雨棚为四周开敞建筑,通常采用钢结构形式,为风敏感结构,本文通过对14个无站台柱雨棚风洞试验的结果进行分析,归纳总结其共性特征,并与现行《建筑结构荷载规范》(GB 50009—2001)进行对比分析,得出无站台柱雨棚风荷载体型系数的一些分布规律,为结构计算提供参考。研究结论:(1)铁路无站台柱雨棚风压系数介于0.1~0.9之间,风吸系数介于-0.3~-2.0之间;(2)试验得出的风压体型系数一般小于《建筑结构荷载规范》(GB 50009—2001)类似参考值,而风吸体型系数两者较为接近;(3)檐口、洞口处的风荷载具有放大效应。  相似文献   

13.
为研究间距对非对称公铁双幅主梁气动特性的影响,以某大跨度公铁双幅斜拉桥主梁断面为背景进行节段模型风洞试验,在间距L/Br=0.2~2.0范围内,测试了2种不同来流方向下双幅主梁的气动特性,分析非对称双幅主梁气动力系数、表面风压分布并推断主梁周围绕流特征,明确间距对非对称公铁双幅主梁气动干扰规律的影响规律。结果表明:无论风向角α=0°或α=180°,上游主梁气动力系数、表面风压分布和绕流方式受间距影响程度相对较小,与单幅主梁气动特性和绕流方式相似;但下游主梁气动特性受间距影响较大,且完全不同于单幅主梁,间隙处的绕流形式随间距的增大而发生变化,下游主梁气动力系数、平均风压系数曲线和脉动风压曲线也表现出完全不同的规律;且间距越大,下游主梁气动特性和绕流方式越接近于单幅主梁。公路主梁的流线性相比于铁路主梁更强,这种气动外形差异导致2种来流方向下非对称双幅主梁气动特性和绕流形式不同,间距在L/Br=0.2~2.0范围内,气动干扰对其影响规律也完全不同。如α=0°时,双主梁上表面始终为“单一钝体流态”;但α=180°时,双主梁上表面属于“剪切层附着流态”,间距不同,上游公路主梁尾流附着于下游铁路主...  相似文献   

14.
铁路声屏障风荷载体型系数研究   总被引:2,自引:0,他引:2  
鉴于现行国家规范对铁路声屏障的风荷载体型系数没有明确的规定,采用CFD流体动力学计算软件、风洞模型测压试验和风洞模型测力试验3种方法,系统研究分析桥梁上、路基上声屏障的风荷载体型系数,比较分析2种不同高度的声屏障设置在线路上风侧、线路两侧和线路下风侧等工况时对其风荷载体型系数的影响.研究结果表明:在计算声屏障风荷载时,如果按照矩形构件的体型系数及风压分布取值,可能会低估声屏障的风荷载数值,声屏障设置的位置对其风荷载体型系数的影响很大,而声屏障的高度对其风荷载体型系数的影响则较小;在对桥梁和路基的声屏障进行结构设计时,建议桥梁声屏障的风荷载体型系数取1.65,路基声屏障的风荷载体型系数取1.99.  相似文献   

15.
采用我国干线铁路开行的复兴号动车组,基于计算流体力学软件Fluent,对高速列车以350 km·h^-1速度通过840 m全封闭声屏障及1/2跨和1/4跨会车工况下声屏障的气压荷载分布规律进行数值模拟。结果表明:会车工况下的压力极值均大于单车工况下,且变化规律更为复杂,声屏障中间位置即1/2跨会车时的压力极值达到最大值,最大正压和负压分别为2 672和4 619 Pa,分别为单车工况下的2.05倍和1.87倍;同一截面各测点的气压荷载波动规律相似,但压力极值存在明显差异;单车工况下,声屏障同一截面上不同测点处的极值压差达到0.6 kPa,体现了压力波传递的三维效应。通过数值模拟获得的全封闭声屏障压力极值和气压荷载分布规律,为声屏障结构设计提供理论依据。  相似文献   

16.
欧洲规范和中国规范在计算风荷载时选用的基本参数有所不同。进行风荷载基本风速(风压)对比,以北京为例,重点分析两种规范关于风荷载重现期转换方式的差别;分别分析在各种地貌形式下中欧规范关于风压高度变化系数存在的差异,并对比两种规范针对特殊地形所采用的不同计算方法;对两种规范下建筑体型系数计算方法和群体效应进行对比分析,并以封闭式双坡屋面为例做具体说明。综合研究结果表明,中欧规范对于荷载基本参数选取存在较大差异。  相似文献   

17.
针对350~400km·h~(-1)高速列车作用于声屏障的脉动风荷载问题,基于三维非稳态的k-ε两方程紊流模型,采用移动网格的数值仿真计算多种车速、多种屏轨距条件下列车通过声屏障区域的动态风场过程,得出声屏障各部位的脉动风荷载时程曲线等各类结果数据及多种参数的影响规律,并与实测资料进行对比分析。结果表明:300~400km·h~(-1)列车脉动风荷载随列车速度的增加而加速增大,与声屏障至线路中心距离呈现近双曲线性反比关系,风压值分布沿声屏障高度呈现底部大、顶部小的规律;理论计算风压值及其与实测列车脉动风荷载时程曲线形状、参数影响规律等均相符较好,部分计算风压量值略大于实测值,原因在于计算中列车及声屏障模型光滑表面的模拟方法忽略了实际粗糙表面的风阻等因素。在仿真与实测的基础上,提出380~400km·h~(-1)高速列车脉动风荷载的最大风压取值建议及广义振动频率范围1.96~4.79Hz等动力设计建议。  相似文献   

18.
采用数值计算的方法,并在风洞试验验证其准确性的基础上,研究在不同横风风速和风向角条件下,列车车身周围列车风的压力分布和风速变化。结果表明:在横风条件下,近地表区域列车风的压力峰峰值和风速极值均大于较高空间处的;相对于迎风侧而言,背风侧列车风的压力峰峰值和风速极值更大;随着横风风速的增加,同一位置处列车风的压力峰峰值变化更大,不同位置处列车风的风速极值呈现逐渐上升的趋势;风向角为45°时近地表区域和较高空间处列车风的压力峰峰值达到最大,在风向角从45°增至180°的过程中,列车风的压力峰峰值呈现下降的趋势;8+8编组时,列车风随环境风场的变化和头车附近壁面的压力分布状况与2+2编组时有相近的特征。  相似文献   

19.
为研究双层桁架桥上列车位于主梁断面上、下层的气动特性,通过节段模型风洞试验对双层桁架主梁断面上列车进行测力、测压。以某大跨度公铁两用悬索桥和CRH2列车为背景,研究双层桁架主梁断面上列车在迎、背风侧时,列车位于上、下层时的三分力系数、平均风压系数以及脉动风压系数,并且分析风攻角对上、下层列车气动特性的影响。研究结果表明:1)上层列车的阻力系数要显著小于下层列车,当列车位于迎风侧时,下层列车的阻力系数可达到上层列车阻力系数的1.6倍,上、下层列车的力矩系数大小基本相同,但是上层列车的升力系数大于下层列车;上、下层列车的阻力系数随风攻角的增加逐渐减小并且两者的差值也逐渐减小。2)上层列车的迎风面、背风面的压差明显小于下层列车的情况,使得上层列车的总体阻力小于下层列车,并且上层列车的顶面、底面的压差要大于下层列车的情况,使得上层列车的总体升力大于下层列车;上层列车迎风面的平均风压随风攻角的增加而减小,下层列车则无明显变化。3)上层列车圆弧过渡段顶部和底部脉动风压系数小于下层列车,并且随着风攻角的增加,下层列车脉动风压系数减小,而上层列车无明显变化,风攻角对上层列车风压系数的脉动性影响较小。研...  相似文献   

20.
为研究列车风激扰下雨棚附属结构的动力响应,以某高铁车站雨棚附属结构为研究对象,建立雨棚附属结构及高速列车仿真模型,分析高速列车以不同速度级通过时雨棚附属结构所受列车风的压力(简称“列车风压”)分布规律;基于此,研究雨棚附属结构的动力响应和疲劳寿命,确定列车风与8级环境风共同作用极限条件下采用不同连接方案时雨棚附属结构的合理设计高度。结果表明:在同等高度下,雨棚附属结构所受列车风压极值随车速的提高而增大;在相同速度级下,列车风压极值随高度的增加而减小;当高速列车以相同速度级通过雨棚时,LED屏应力极值最大,车站站牌应力极值次之,出站口指示牌应力极值最小;雨棚附属结构疲劳寿命随车速提高不断降低,在现有运营条件下雨棚附属结构服役100 a不会发生疲劳破坏,其中LED屏的疲劳寿命最短,疲劳破坏最先发生在顶部连接部位;极限条件下雨棚附属结构最优连接方案下的合理设计高度范围为5.72~10.50 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号