首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
简要介绍了铁路工程项目噪声回顾评价的工作方法,从车流变化、声源源强、鸣笛等方面分析了线路类和站场类铁路噪声的特征及预测误差产生的原因;论证了原预测结果的准确性,针对列车等铁路声源的测量、计算方法提出了改进建议,为铁路噪声环境影响预测方法的改进提供了思路。  相似文献   

2.
试验分析了电力机车司机室噪声源的噪声特性和司机室各墙体的隔声性能。基于声源声功率的等效原理,将室外声源声功率级等效转换到室内声源声功率级,基于现有隔声设计的基本公式,对电力机车司机室内受声点的噪声进行了预测。结果表明:轮轨噪声、机械间设备噪声和司机室内空调、暖风机噪声是司机室噪声的主要来源;由于机械间内产生了足够的混响声,机械间内受声点声压级的大小与声源到受声点的距离无关;计算结果与测试结果存在一定的误差,但仍在可接受范围之内。预测方法能为电力机车司机室早期的声学设计和改进提供设计依据。  相似文献   

3.
铁路噪声预测计算方法   总被引:11,自引:1,他引:10  
根据声学基本理论和有关有限长运动线声源指向性、等效时间等声学特性研究成果,结合铁路噪声的特点,总结了比例法和模式法两种主要的噪声预测方法,并给出了相应的计算公式,可供铁路建设项目环境影响评价中预测铁路噪声时参考。  相似文献   

4.
列车运行噪声的几何发散损失   总被引:5,自引:0,他引:5  
根据基本声学理论,分析具有单极子、中间和偶极子三种指向性的有限长线声源的几何发散损失特性。给出适合铁路列车运行噪声特点的几何发散损失计算方法。指出现行有关标准的计算方法存在声源指向性不明确、计算方法误差偏大和不适合铁路列车运行噪声等缺点。推荐铁路列车运行噪声几何发散损失计算采用偶极子指向性特性的理论计算公式或简化公式。  相似文献   

5.
环境噪声的预测和声源的探测方法   总被引:1,自引:0,他引:1  
噪声预测在城市规划上是极重要的研究课题。目前噪声防治方法尚不完备,本文较系统地阐述了建设项目噪声对环境影响的预测、声源位置的探测、声源对受声点声压作用的预测,以及最新的计算机判定声源位置的方法,这将对制定有效的防噪对策有着独特的价值。  相似文献   

6.
为推动噪声地图在高速铁路噪声管理中的应用,研究噪声预测模型与地理信息系统(GIS)相结合的高速铁路噪声地图绘制技术。首先,根据高速铁路噪声源分布特征和线路结构特征,优化高速铁路多等效声源预测模型和声屏障插入损失计算方法;其次,在GIS软件中搭建某高速铁路三维地理信息模型,二次开发基于该模型的铁路噪声预测技术;然后,进行离散节点的噪声计算,并通过空间插值绘制连续的噪声分布地图。研究结果表明:采用该技术绘制的我国某高速铁路噪声地图与实测结果对比误差小于1 dB (A),验证了该高速铁路噪声地图的准确性和实用性,可作为铁路噪声管理部门制定噪声控制对策的参考依据。  相似文献   

7.
高速铁路沿线噪声的预测方法   总被引:2,自引:1,他引:1  
刘岩  张艳 《中国铁道科学》2002,23(5):131-134
从点声源的理论出发,对列车运动噪声进行预测计算,采用一列车通过时的单发暴露声级、时间特性的最大声压级和一定时间内的等效声级等作为噪声评价量,编制了相应的可视化软件,并将预测结果与日本预测方法进行对比,证明该软件预测计算的准确性及采用点声源理论进行预测评价的可行性。  相似文献   

8.
基于相控阵列的噪声源识别及仿真研究   总被引:1,自引:0,他引:1  
介绍了基于麦克风阵列进行噪声源识别的基本原理,采用相位延迟对噪声源空间进行扫描,确定声源的波达方向,进而识别声源的位置。利用计算机仿真技术模拟了空间两点声源产生的噪声,并利用该算法进行了声源位置识别。理论与仿真研究表明采用相控阵列能够识别噪声源的位置,同时能够获得不同噪声源的噪声大小和噪声贡献量,利用该方法可以对列车的运行噪声源进行分析。  相似文献   

9.
城市轨道交通噪声预测方法   总被引:2,自引:0,他引:2  
在对城市轨道交通的噪声源特点进行分析的基础上,用类比法、比例法、模式法、模型法比较了国内外比较成熟的铁路噪声预测方法,提出把城市轨道交通噪声作为一个线声源、噪声源分解为轮轨噪声和牵引噪声分别进行预测的方法,并给出了详细的计算步骤.结合曼谷机场连接线工程,实例证明了此方法的可操作性及科学性.  相似文献   

10.
双声源模式下高铁声屏障降噪效果仿真分析   总被引:1,自引:0,他引:1  
研究目的:高速铁路与普通铁路噪声源特性存在较大差异,按照传统方法计算设计的声屏障在高速铁路降噪应用中效果不理想。以武广客运专线某路基试验段为模型参照对象,基于高速铁路噪声源特性研究,建立双声源模式的高速铁路声屏障降噪模型,分别对不同声源模式下3 m高直立型声屏障的降噪效果进行仿真分析。研究结论:(1)将仿真结果与实测结果进行对比,发现双声源模式的预测噪声级与实测值较为接近,而单声源模式的计算值明显小于实测结果和双声源模式的仿真结果,偏差达到8 dB A左右;(2)单声源模式的噪声衰减计算结果达到10.7~13.1 dB A,比实测结果显著偏高;(3)针对铁路限界处的噪声超过了规定的限值70 dB A,提出了合理的声屏障优化设计方法以改善沿线的生态环境;(4)将弓网噪声单独考虑的双声源模式可为高速铁路声屏障的设计和应用提供可靠依据。  相似文献   

11.
基于统计能量分析法的地铁车辆噪声预估   总被引:1,自引:0,他引:1  
建立了用于地铁车辆中高频噪声分析的整车统计能量分析(SEA)预测模型,分析了对地铁车辆内部噪声具有较大贡献的噪声源种类,通过对SEA模型施加噪声源激励载荷进行仿真,计算出地铁车辆内部各部位的噪声声压级,找出地铁车辆噪声的薄弱环节进而进行改进。  相似文献   

12.
轨道交通噪声问题日益引起了人们的关注,对轨道线路两侧的声环境预测工作也提出了新的要求.通过对我国《环境影响评价技术导则-城市轨道交通》中的声环境影响预测公式进行分析,从计算公式的参考点噪声辐射源强、声屏障衰减模型和声屏障等效频率计算等三个方面对其进行修正,以期能使我国的城市轨道交通噪声预测模式更加完善,计算更加精确.  相似文献   

13.
铁道车辆下部噪声主要由滚动噪声、空气动力噪声和机器噪声组成。采用声强测试法确定了新干线和既有线车辆滚动噪声的主要噪声源,并初步分析了两者噪声源分布不同的原因。  相似文献   

14.
日本高速铁路噪声预测方法   总被引:2,自引:0,他引:2  
日本在设计、建设北陆新干线时采用的高速铁路噪声预测方法,是根据高速铁路噪声的特点,按车辆下部噪声、构筑物噪声、集电系噪声、车辆上部空气动力噪声分别计算后合成,预测受声点处的噪声级。该方法对我国高速铁路和客运专线铁路的噪声预测有一定参考价值。  相似文献   

15.
高速铁路噪声计算方法   总被引:13,自引:2,他引:11  
根据离开轨道中心15m处高速铁路的噪声暴露声级,通过引入地面衰减、屏障衰减和房屋建筑及树木的附加衰减参数,建立噪声理论分析模型。导出预测高速铁路牵引噪声、轮轨噪声和空气动力噪声的理论计算式。对秦沈客运专线铁路噪声进行了预测。经与实测数据进行对比,数据吻合良好。  相似文献   

16.
高速铁路桥梁声屏障插入损失五声源预测模式研究   总被引:4,自引:1,他引:3  
研究一种高速铁路桥梁声屏障插入损失的五声源预测模式,可应用于时速300 km以上高速铁路声屏障声学设计。对高速铁路噪声源进行现场辨识测试,分析其声源特性,将高速铁路噪声源简化为轮轨区、车体下部、车体上部、集电系统、桥梁结构5个等效噪声源。根据单声源模式的声屏障插入损失预测公式,结合不同车速下声源等效频率和噪声贡献量,同时考虑桥梁翼板对声传播的影响,形成五声源模式的声屏障插入损失预测公式。采用该方法计算2.15 m声屏障插入损失并与现场测试数据对比,结果显示距离线路25~50 m处受声点插入损失预测结果与实测结果吻合度最高。  相似文献   

17.
铁路机车风笛声学参数的确定   总被引:1,自引:1,他引:0  
根据我国主型机车实际采用的风笛声学性能测试数据 ,参考国际铁路联盟 (UIC)的有关标准 ,初步确定了铁路噪声预测中采用的风笛声学参数值 ,其中包括倍频带声压级和指向性参数值 ,可应用于铁路建设项目环境影响评价的铁路噪声预测计算模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号