首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Knowledge of vehicle dynamics data is important for vehicle control systems that aim to enhance vehicle handling and passenger safety. This study introduces observers that estimate lateral load transfer and wheel–ground contact normal forces, commonly known as vertical forces. The proposed method is based on the dynamic response of a vehicle instrumented with cheap and currently available standard sensors. The estimation process is separated into three blocks: the first block serves to identify the vehicle’s mass, the second block contains a linear observer whose main role is to estimate the roll angle and the one-side lateral transfer load, while in the third block we compare linear and nonlinear models for the estimation of four wheel vertical forces. The different observers are based on a prediction/estimation filter. The performance of this concept is tested and compared with real experimental data acquired using the INRETS-MA (Institut National de Recherche sur les Transports et leur Sécurité – Département Mécanismes d’Accidents) Laboratory car. Experimental results demonstrate the ability of this approach to provide accurate estimation, thus showing its potential as a practical low-cost solution for calculating normal forces.  相似文献   

2.
This paper devotes analytical effort in developing the 2M equivalent approach to analyse both the effect of vehicle body roll and n-axle handling on vehicle dynamics. The 1M equivalent vehicle 2DOF equation including an equivalent roll effect was derived from the conventional two-axle 3DOF vehicle model. And the 1M equivalent dynamics concepts were calculated to evaluate the steady-state steering, frequency characteristics, and root locus of the two-axle vehicle with only the effect of body roll. This 1M equivalent approach is extended to a three-axle 3DOF model to derive similar 1M equivalent mathematical identities including an equivalent roll effect. The 1M equivalent wheelbases and stability factor with the effect of the third axle or body roll, and 2M equivalent wheelbase and stability factor including both the effect of body roll and the third-axle handling were derived to evaluate the steady-state steering, frequency characteristics, and root locus of the three-axle vehicle. By using the recursive method, the generalised 1M equivalent wheelbase and stability factor with the effect of n-axle handling and 2M equivalent generalised wheelbase and stability factor including both the effect of body roll and n-axle handling were derived to evaluate the steady-state steering, frequency characteristics, and root locus of the n-axle vehicle. The 2M equivalent approach and developed generalised mathematical handling concepts were validated to be useful and could serve as an important tool for estimating both the effect of vehicle body roll and n-axle handling on multi-axle vehicle dynamics.  相似文献   

3.
ABSTRACT

In this paper, a coordinated control strategy is proposed to provide an effective improvement in handling stability of the vehicle, safety, and comfortable ride for passengers. This control strategy is based on the coordination among active steering, differential braking, and active suspension systems. Two families of controllers are used for this purpose, which are the high order sliding mode and the backstepping controllers. The control strategy was tested on a full nonlinear vehicle model in the environment of MATLAB/Simulink. Rollover avoidance and yaw stability control constraints have been considered. The control system mainly focuses on yaw stability control. When rollover risk is detected, the proposed strategy controls the roll dynamics to decrease rollover propensity. Simulation results for two different critical driving scenarios, the first one is a double lane change and the other one is a J-turn manoeuvre, show the effectiveness of the coordination strategy in stabilising the vehicle, enhancing handling and reducing rollover propensity.  相似文献   

4.
在山路和平路上,进行了不同载荷下国V柴油车的实际道路行驶排放(RDE)试验.采集车速、海拔、氮氧化物(Nox)和颗粒物数量(PN)排放浓度等数据,分析了道路坡度、车辆载荷与输出功率对排放的影响.研究发现:测试柴油车辆,在平均坡度约6%山路行驶时Nox排放因子高于平路20%以上,PN低于平路20%以上.道路坡度自0增大到...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号