首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Steering feel, or steering torque feedback, is widely regarded as an important aspect of the handling quality of a vehicle. Despite this, there is little theoretical understanding of its role. This paper describes an initial attempt to model the role of steering torque feedback arising from lateral tyre forces. The path-following control of a nonlinear vehicle model is implemented using a time-varying model predictive controller. A series of Kalman filters are used to represent the driver's ability to generate estimates of the system states from noisy sensory measurements, including the steering torque. It is found that under constant road friction conditions, the steering torque feedback reduces path-following errors provided the friction is sufficiently high to prevent frequent saturation of the tyres. When the driver model is extended to allow identification of, and adaptation to, a varying friction condition, it is found that the steering torque assists in the accurate identification of the friction condition. The simulation results give insight into the role of steering torque feedback arising from lateral tyre forces. The paper concludes with recommendations for further work.  相似文献   

2.
车辆转向系统和制动系统之间存在着很强的速度耦合关系,造成两个系统之间的性能相互影响,使得车辆在转向制动这一工况成了汽车最危险的工况之一。本文结合实际车辆参数建立转向系统的二自由度模型和制动系统的单车轮模型,针对车辆转向制动工况设计了模糊解耦控制器,实现了车辆的转向与制动同时控制。经验证含有模糊解耦控制的车辆转向制动系统具有很好的动态控制效果,并且有很强的鲁棒性和自适应性。  相似文献   

3.
ABSTRACT

Collision avoidance is a crucial function for all ground vehicles, and using integrated chassis systems to support the driver presents a growing opportunity in active safety. With actuators such as in-wheel electric motors, active front steer and individual wheel brake control, there is an opportunity to develop integrated chassis systems that fully support the driver in safety critical situations. Here we consider the scenario of an impending frontal collision with a stationary or slower moving vehicle in the same driving lane. Traditionally, researchers have approached the required collision avoidance manoeuver as a hierarchical scheme, which separates the decision-making, path planning and path tracking. In this context, a key decision is whether to perform straight-line braking, or steer to change lanes, or indeed perform combined braking and steering. This paper approaches the collision avoidance directly from the perspective of constrained dynamic optimisation, using a single optimisation procedure to cover these aspects within a single online optimisation scheme of model predictive control (MPC). While the new approach is demonstrated in the context of a fully autonomous safety system, it is expected that the same approach can incorporate driver inputs as additional constraints, yielding a flexible and coherent driver assistance system.  相似文献   

4.
This paper describes a risk management algorithm for rear-side collision avoidance. The proposed risk management algorithm consists of a supervisor and a coordinator. The supervisor is designed to monitor collision risks between the subject vehicle and approaching vehicle in the adjacent lane. An appropriate criterion of intervention, which satisfies high acceptance to drivers through the consideration of a realistic traffic, has been determined based on the analysis of the kinematics of the vehicles in longitudinal and lateral directions. In order to assist the driver actively and increase driver's safety, a coordinator is designed to combine lateral control using a steering torque overlay by motor-driven power steering and differential braking by vehicle stability control. In order to prevent the collision while limiting actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort, the Lyapunov theory and linear matrix inequalities based optimisation methods have been used. The proposed risk management algorithm has been evaluated via simulation using CarSim and MATLAB/Simulink.  相似文献   

5.
This paper devotes both analytical and experimental efforts in developing a comprehensive dynamic model for an articulated steering wheel loader. The general motion of a wheel loader without suspension is described by seven degrees of freedom (DOF) (three for translation and four for rotation) in this model, which can be used to study the problem of wheel loader dynamics on slopes and over obstacles. A scale wheel loader was designed and manufactured to validate the dynamic model in three conditions (turning on level ground, turning on slopes, and passing over obstacles). The test results reasonably agree with the simulation results. The developed dynamic model was found to be useful and could serve as an important tool for analysing the stability of wheel loaders.  相似文献   

6.
ABSTRACT

The handling characteristic is a classical topic of vehicle dynamics. Usually, vehicle handling is studied by analyzing the understeer coefficient in quasi-steady-state maneuvers. In this paper, experimental tests are performed on an electric vehicle with four independent motors, which is able to reproduce front-wheel-drive, rear-wheel-drive and all-wheel-drive (FWD, RWD and AWD, respectively) architectures. The handling characteristics of each architecture are inferred through classical and new concepts. The study presents a procedure to compute the longitudinal and lateral tire forces, which is based on a first estimate and a subsequent correction of the tire forces that guarantee the equilibrium. A yaw moment analysis is performed to identify the contributions of the longitudinal and lateral forces. The results show a good agreement between the classical and new formulations of the understeer coefficient, and allow to infer a relationship between the understeer coefficient and the yaw moment analysis. The handling characteristics vary with speed and front-to-rear wheel torque distribution. An apparently surprising result arises at low speed: the RWD architecture is the most understeering configuration. This is discussed by analyzing the yaw moment caused by the longitudinal forces of the front tires, which is significant for high values of lateral acceleration and steering angle.  相似文献   

7.
Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.  相似文献   

8.
The compensatory (feedback) component of a human driver's steering control is examined. In particular, the effect of the cognitive process is studied. Model predictive control theory is used to implement models of intermittency in cognitive processing. Experiments using a fixed-base driving simulator with periodic occlusion of the visual display are used to reveal the nature of the driver's steering behaviour. An intermittent serial-ballistic control strategy is found to match the measured behaviour better than intermittent zero-order hold or continuous control. The findings may enable some insight to driver-vehicle interaction and vehicle handling qualities.  相似文献   

9.
车辆转弯制动横向轨迹控制驾驶员模型研究   总被引:1,自引:1,他引:0  
为了较为真实地反映车辆转弯制动工况,建立了含Pacejka"魔术公式"非线性联合工况轮胎模型的4轮8自由度车辆系统模型,并基于预瞄跟随理论、加速度反馈控制和模糊PID控制技术建立了车辆转弯制动横向轨迹控制驾驶员模型。针对不同初始速度和制动强度,利用MATLAB/Simulink进行了横向轨迹控制仿真分析。分析结果表明,驾驶员控制模型能很好地跟踪横向轨迹,模型的可行性和有效性得到验证,同时不同仿真条件下结果的一致性也说明该控制方法具有较强的自适应能力和鲁棒性,为进一步研究复杂工况下的驾驶员模型及横向轨迹控制提供了一条可行的途径。  相似文献   

10.
ABSTRACT

Multi-trailer articulated heavy vehicles (MTAHVs) are increasingly used around the world due to their economic and environmental benefits. However, MTAHVs exhibit poor maneuverability and low lateral stability, which may lead to fatal traffic accidents. Given the safety risks, it is necessary to solve the steering and stability problems of MTAHVs before they are safely mass deployed on our roads. To this end, active trailer steering (ATS) based on the linear quadratic regulator (LQR) technique has been explored. The LQR-based ATS demonstrates improved maneuverability and enhanced lateral stability. In the ATS design, the vehicle and operating parameters are assumed constant. Thus, it is natural to question the robustness of the ATS in presence of vehicle and operating parameter uncertainties. To address the problem, this paper proposes a robust ATS system. The robust ATS controller is designed using a linear matrix inequality (LMI) based LQR method. In the design, both vehicle and steering actuator parameter uncertainties are considered; to enhance the robustness of the ATS, the weighting matrices of the proposed controller are optimized. The robust controller is applied to an A-Train Double, one type of MTAHV. The effectiveness of the robust ATS is demonstrated using numerical and hardware-in-the-loop real-time simulations.  相似文献   

11.
12.
A virtual test rig is presented using a three-dimensional model of the elasto-kinematic behaviour of a vehicle. A general approach is put forward to determine the three-dimensional position of the body and the main parameters which influence the handling of the vehicle. For the design process, the variable input data are the longitudinal and lateral acceleration and the curve radius, which are defined by the user as a design goal. For the optimisation process, once the vehicle has been built, the variable input data are the travel of the four struts and the steering wheel angle, which is obtained through monitoring the vehicle. The virtual test rig has been applied to a standard vehicle and the validity of the results has been proven.  相似文献   

13.
汽车驾驶员模型是汽车交通安全、智能交通系统、汽车自动驾驶和车辆巡航等技术的基础研究内容和关键环节之一。按照汽车驾驶员模型的研究方向及应用,将驾驶员模型分为基于人—车—环境闭环系统汽车操纵稳定性的驾驶员模型、基于智能交通系统的驾驶员行为模型和基于交通安全的驾驶员疲劳模型等类型,综述了上述各类汽车驾驶员模型的研究现状,对各类驾驶员模型存在的不足进行了分析论述,并展望了汽车驾驶员模型的发展方向及趋势。  相似文献   

14.
15.
In this article, a new approach to estimate the vehicle tyre forces, tyre–road maximum friction coefficient, and slip slope is presented. Contrary to the majority of the previous work on this subject, a new tyre model for the estimation of the tyre–road interface characterisation is proposed. First, the tyre model is built and compared with those of Pacejka, Dugoff, and one other tyre model. Then, based on a vehicle model that uses four degrees of freedom, an extended Kalman filter (EKF) method is designed to estimate the vehicle motion and tyre forces. The shortcomings of force estimation are discussed in this article. Based on the proposed tyre model and the improved force measurements, another EKF is implemented to estimate the tyre model parameters, including the maximum friction coefficient, slip slope, etc. The tyre forces are accurately obtained simultaneously. Finally, very promising results have been achieved for pure acceleration/braking for varying road conditions, both in pure steering and combined manoeuvre simulations.  相似文献   

16.
The objective of this paper is to improve the performance estimation model of the internal flow field of a torque converter. Compared with performance experiment results, the converter based on the one-dimensional model does not satisfy the performance requirements demanded in practice. Therefore, we need to develop more predictable and reliable performance estimation models. In order to obtain shape information on three-dimensional blade geometry, a process of reverse engineering conducts a torque converter assembly, impeller, turbine and stator. In addition, a CFD simulation including mesh generation and post-processing was carried out to extract equivalent parameters from the internal flow field. The internal flow field can be explained by analyze the correlation between a performance estimation model and CFD analysis. The equivalent performance model adopts the variation of energy loss coefficients for a given operating condition according to the application of a changing energy loss coefficient by the least mean squares method. The estimated equivalent model improves the agreement in performance between experiments and the theoretical model. This model can reduce the error to within about 3 percent. Furthermore, this procedure for predicted performance achieves eminence in the estimation of the capacity factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号