首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
To meet the demand for high speed, better safety performance and ride comfort ofvehicle in dealingwith lifting the service lifeof tyresand reducing fuel consumption, globaltyre design tends to favour radial ply, tubeless and low-profile tyres. As a result, an energyefficient and safe tyre is born. Radial ply tyres are energy efficient, safe, and durable, andwill upgrade China’s tyre industry. Globally, the total output of tyres is nearly 1 billion andnearly 90 per cent are radials. And now a…  相似文献   

2.
Vehicle stability and active safety control depend heavily on tyre forces available on each wheel of a vehicle. Since tyre forces are strongly affected by the tyre–road friction coefficient, it is crucial to optimise the use of the adhesion limits of the tyres. This study presents a hybrid method to identify the road friction limitation; it contributes significantly to active vehicle safety. A hybrid estimator is developed based on the three degrees-of-freedom vehicle model, which considers longitudinal, lateral and yaw motions. The proposed hybrid estimator includes two sub-estimators: one is the vehicle state information estimator using the unscented Kalman filter and another is the integrated road friction estimator. By connecting two sub-estimators simultaneously, the proposed algorithm can effectively estimate the road friction coefficient. The performance of the proposed estimation algorithm is validated in CarSim/Matlab co-simulation environment under three different road conditions (high-μ, low-μ and mixed-μ). Simulation results show that the proposed estimator can assess vehicle states and road friction coefficient with good accuracy.  相似文献   

3.
ABSTRACT

The interaction between the tyre and the road is crucial for understanding the dynamic behaviour of a vehicle. The road–tyre friction characteristics play a key role in the design of braking, traction and stability control systems. Thus, in order to have a good performance of vehicle dynamic stability control, real-time estimation of the tyre–road friction coefficient is required. This paper presents a new development of an on-line tyre–road friction parameters estimation methodology and its implementation using both LuGre and Burckhardt tyre–road friction models. The proposed method provides the capability to observe the tyre–road friction coefficient directly using measurable signals in real-time. In the first step of our approach, the recursive least squares is employed to identify the linear parameterisation form of the Burckhardt model. The identified parameters provide, through a T–S fuzzy system, the initial values for the LuGre model. Then, a new LuGre model-based nonlinear least squares parameter estimation algorithm using the proposed static form of the LuGre to obtain the parameters of LuGre model based on recursive nonlinear optimisation of the curve fitting errors is presented. The effectiveness and performance of the algorithm are demonstrated through the real-time model simulations with different longitudinal speeds and different kinds of tyres on various road surface conditions in both Matlab/Carsim environments as well as collected data from real experiments on a commercial trailer.  相似文献   

4.
A new method to describe tyre rolling kinematics and how to calculate tyre forces and moments is presented. The Lagrange–Euler method is used to calculate the velocity and contact deformation of a tyre structure under large deformation. The calculation of structure deformation is based on the Lagrange method, while the Euler method is used to analyse the deformation and forces in the contact area. The method to predict tyre forces and moments is built using kinematic theory and nonlinear finite element analysis. A detailed analysis of the tyre tangential contact velocity and the relationships between contact forces, contact areas, lateral forces, and yaw and camber angles has been performed for specific tyres. Research on the parametric sensitivity of tyre lateral forces and self-aligning torque on tread stiffness and friction coefficients is carried out in the second part of this paper.  相似文献   

5.
There are two aims for the second part of this paper: verifying the theory presented in the first part through parameter variation and comparison between simulation and experiment, and to study the effect of the belt structure on the cornering properties of radial tyres. Research has been carried out with a passenger car radial tyre and two different kinds of truck or bus radial tyres using both simulation and experiment. This second part of the paper shows that belt structure plays an important role in the generation of tyre forces and moments in addition to the effects of the tread stiffness and friction coefficients. The theory and method presented in this paper opens a new robust way to predict the tyre forces and moments from the tyre design and provides a reliable model for a generation mechanism.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号