共查询到20条相似文献,搜索用时 0 毫秒
1.
The ‘simple double-elliptical contact’ (SDEC) approach by Piotrowski et al. [The Kalker book of tables for non-Hertzian contact of wheel and rail. Vehicle Syst Dyn. 2017;55:875–901] generates a-symmetrical contact patches in an elegant way. This allows to extend the table-based approach for the wheel–rail creep force calculation towards non-Hertzian contact geometry. This is an important line of research, because FASTSIM is intricate for non-Hertzian contacts, whereas CONTACT requires long calculation times. Here, we comment on the further motivation that's provided for the approach. According to the authors, ‘the spin creepage generates longitudinal creep force in non-symmetric, non-elliptical contacts’, which is ‘completely lost’ when using elliptical regularisation. We demonstrate that this mainly depends on the choice of contact origin, and that the interaction is much reduced if different choices are made. This suggests that elliptical regularisation may be viable still, if the details are properly worked out. Furthermore, we introduce the spin center and the free-rolling position as means to extend the table-based approach towards more general non-Hertzian circumstances. 相似文献
2.
This paper presents a comparison of four models of rolling contact used for online contact force evaluation in rail vehicle dynamics. Until now only a few wheel–rail contact models have been used for online simulation in multibody software (MBS). Many more models exist and their behaviour has been studied offline, but a comparative study of the mutual influence between the calculation of the creep forces and the simulated vehicle dynamics seems to be missing. Such a comparison would help researchers with the assessment of accuracy and calculation time. The contact methods investigated in this paper are FASTSIM, Linder, Kik–Piotrowski and Stripes. They are compared through a coupling between an MBS for the vehicle simulation and Matlab for the contact models. This way the influence of the creep force calculation on the vehicle simulation is investigated. More specifically this study focuses on the influence of the contact model on the simulation of the hunting motion and on the curving behaviour. 相似文献
3.
A modified Kik–Piotrowski (MKP) model is proposed in this paper for an accurate and robust calculation of wheel–rail normal contact problem. The presented method is able to consider the relationship between the elastic deformation of a line and the normal pressure distribution within the contact patch. A novel shape correction method is put forward to correctly describe the elastic deformation of the contact patch. Taking the results estimated by Kalker’s variational method and Kik–Piotrowski method as references, the proposed method is validated by three contact cases, including the assumed standardised non-Hertzian contact and the two-point contact, as well as the contact behaviours based on three actual wheel–rail profiles. The simulation results indicate that, compared with Kik–Piotrowski method, the proposed MKP method achieves better agreement with Kalker’s variational method. Moreover, the MKP method can avoid the abrupt change of wheel–rail normal force due to the sudden transfer of the contact point, which contributes to a better computational stability. 相似文献
4.
In most rail vehicle dynamics simulation packages, tangential solution of the wheel–rail contact is gained by means of Kalker's FASTSIM algorithm. While 5–25% error is expected for creep force estimation, the errors of shear stress distribution, needed for wheel–rail damage analysis, may rise above 30% due to the parabolic traction bound. Therefore, a novel algorithm named FaStrip is proposed as an alternative to FASTSIM. It is based on the strip theory which extends the two-dimensional rolling contact solution to three-dimensional contacts. To form FaStrip, the original strip theory is amended to obtain accurate estimations for any contact ellipse size and it is combined by a numerical algorithm to handle spin. The comparison between the two algorithms shows that using FaStrip improves the accuracy of the estimated shear stress distribution and the creep force estimation in all studied cases. In combined lateral creepage and spin cases, for instance, the error in force estimation reduces from 18% to less than 2%. The estimation of the slip velocities in the slip zone, needed for wear analysis, is also studied. Since FaStrip is as fast as FASTSIM, it can be an alternative for tangential solution of the wheel–rail contact in simulation packages. 相似文献
6.
An approximate analytical method is proposed for calculating the contact patch and pressure distribution in the wheel–rail interface. The deformation of the surfaces in contact is approximated using the separation between them. This makes it possible to estimate the contact patch analytically. The contact pressure distribution in the rolling direction is assumed to be elliptic with its maximum calculated by applying Hertz' solution locally. The results are identical to Hertz's for elliptic cases. In non-elliptic cases good agreement is achieved in comparison to the more accurate but computationally expensive Kalker's variational method (CONTACT code). Compared to simplified non-elliptic contact methods based on virtual penetration, the calculated contact patch and pressure distribution are markedly improved. The computational cost of the proposed method is significantly lower than the more detailed methods, making it worthwhile to be applied to rolling contact in rail vehicle dynamics simulation. Such fast and accurate estimation of contact patch and pressure paves the way for on-line modelling of damage phenomena in dynamics simulation packages. 相似文献
7.
The influence of wheel and rail profile shape features on the initiation of rolling contact fatigue (RCF) cracks is evaluated based on the results of multi-body vehicle dynamics simulations. The damage index and surface fatigue index are used as two damage parameters to assess the influence of the different features. The damage parameters showed good agreement to one another and to in-field observations. The wheel and rail profile shape features showed a correlation to the predicted RCF damage. The RCF damage proved to be most sensitive to the position of hollow wear and thus bogie tracking. RCF initiation and crack growth can be reduced by eliminating unwanted shape features through maintenance and design and by improving bogie tracking. 相似文献
8.
A thorough investigation of wheel–rail impact due to wheel flats is presented, together with a quantitative characterization of the main mechanisms and parameters. A criterion for the speed with respect to contact loss between wheel and rail is derived. In the subcritical speed regime, the magnitude of the impact force is shown to be directly related to the geometry of the flat, whereas in the transcritical speed regime a fictitious or effective flat depth exists, which decreases with the second order of the speed. In this domain, the position of impact shifts towards the end of the flat with increasing speed. The impact force increases with the second order of the speed in the subcritical speed regime and approximately the first order of the speed in the transcritical speed regime. The magnitude of the impact force is inversely proportional to the minimum circumferential curvature of the wheel tread defect in the subcritical speed regime, and to the effective minimum curvature in the transcritical case. The variation with the flat depth is less; the impact varies with the square root of the flat depth. The presented theory is in accordance with measurements reported in the literature and explains characteristic features in them. 相似文献
9.
Advanced modelling of rail vehicle dynamics requires realistic solutions of contact problems for wheels and rails that are able to describe contact singularities, encountered for wheels and rails. The basic singularities demonstrate themselves as double and multiple contact patches. The solutions of the contact problems have to be known practically in each step of the numerical integration of the differential equations of the model. The existing fast, approximate methods of solution to achieve this goal have been outlined. One way to do this is to replace a multi-point contact by a set of ellipses. The other methods are based on so-called virtual penetration. They allow calculating the non-elliptical, multiple contact patches and creep forces online, during integration of the model. This allows nearly real-time simulations. The methods are valid and applicable for so-called quasi-Hertzian cases, when the contact conditions do not deviate much from the assumptions of the Hertz theory. It is believed that it is worthwhile to use them in other cases too. 相似文献
10.
This article deals with the application of the FastSim algorithm to the solution of the tangential contact problem for non-elliptical contact areas. At first, the causes creating problems for the solution of non-hertzian contact areas with this algorithm shall be analyzed. Then, different currently existing methods shall be studied, analyzing their accuracy characteristics and computational cost to determine whether or not they are appropriate to use in dynamic simulations. Finally, a new strategy shall be proposed that, in the opinion of the authors, offers good characteristics of precision and computational cost. 相似文献
11.
In certification of new rail vehicles with respect to running characteristics, a wide variety of operating conditions needs to be considered. However, in associated test runs the wheel–rail friction condition is difficult to handle because the friction coefficient needs to be fairly high and the friction is also generally hard to assess. This is an issue that has been studied in the European project DynoTRAIN and part of the results is presented in this paper. More specifically, an algorithm for estimating the wheel–rail friction coefficient at vehicle certification tests is proposed. Owing to lack of some measurement results, the algorithm here is evaluated in a simulation environment which is also an important step towards practical implementation. A quality measure of the friction estimate is suggested in terms of estimated wheel–rail spin and total creep. It is concluded that, tentatively, the total creep should exceed 0.006 and the spin should be less than 1.0 m ?1 for the algorithm to give a good friction estimate. Sensitivity analysis is carried out to imitate measurement errors, but should be expanded in further work. 相似文献
12.
With the aim of improving the continuous measurement of wheel–rail contact force by instrumented wheelset, instead of solving the non-linear equations, we proposed a new method based on state space theory. With this new method, the wheel–rail contact force can be calculated by the recurrence relation and the signals from strain gauge bridges on wheel web. The implementation of continuous instrumented wheelset is quite general and simplified, due to the specific bridging scheme is not necessary. It means that continuous measurement of the contact force could be realised with a simple bridging scheme, even as simple as discrete instrumented scheme. In this work, we first demonstrated and discussed the effectiveness and accuracy of this new method by estimation results with the numerical simulations, and we also applied this new method to two field tests, including one was conducted in a loop test line using a high-speed train and the other one was conducted in an urban line with a light rail vehicle. In a word, this new method is proved to be an effective way to monitor the wheel–rail contact force of rail vehicle track system. 相似文献
13.
J. J. Kalker has been the first to consider non-steady-state or transient contact mechanics. Based on Kalker the second author developed a linear contact model for the non-steady-state rolling contact of a wheel running over slightly corrugated rails. The theoretical investigations are concentrated on linear, non-steady-state contact mechanics superimposed to a nonlinear reference state. The reference state is given by the running behaviour of a wheelset due to traction, curving or hunting. For the linear, non-steady-state analysis Kalker's theory has to be modified to predict wear rates in dependency of the corrugation wavelengths. As a result corrugations are only amplified in the range between 2 and 10 cm. Therefore, non-steady-state contact mechanics and wear are responsible for a wavelength fixing mechanism. Structural mechanics of the rail indicate that wavelength in this range is predominantly amplified. 相似文献
14.
Abstract This paper deals with the solution of the non-steady state wheel-rail contact problem. Firstly, the existing models are analysed and it is concluded that none of them have the computational efficiency and/or accuracy characteristics required to be used in a railway simulation programme. Following this, a new solution is proposed to the problem that allows obtaining sufficiently accurate results with a relatively low computational cost. During the development of the proposed method it has been assumed that only one type of creepage is variable with respect to the time. Further work is necessary to extend it to more general cases. 相似文献
15.
This paper presents a model simulating rail roughness growth in which the interaction of a wheelset with the track is considered. The aim is to investigate any possible mechanism for roughness growth due to the coupling between the vertical dynamics, the torsional vibration across the axle of the wheelset and the non-steady contact mechanics. The time-domain simulations are carried out for a driven wheelset on tangent track. Both rigid and flexible are considered with parameter variations for moments of the wheelset, vehicle speeds and wavelengths of initial roughnesses. The 2D non-Hertzian and non-steady contact model used in simulations are based on influence coefficients obtained from a boundary element model. The nonlinear development of the rail roughnesses after millions of wheelset passages is also presented. 相似文献
16.
A classification of wheel–rail contact is given. Difference is made between modelling of a running wheel with continuous single-point-contact, as is common practice in wheel–rail contact analysis, and a wheel with transient double- or multi-point-contact, which may occur for rail irregularities with curvatures larger than that of the wheel circumference. It is shown that application of the first model for these irregularities will strongly underestimate the contact forces as it does not describe occurring mechanisms correctly. Further, it is shown that in principle it is not possible to describe the second type of contact fully correct with a lumped wheel model. Both wheel models are formulated mathematically for some basic contact cases. Afterwards, results are applied to a linear track model. Analytical closed-form solutions are found in the frequency domain for arbitrary type of contact and numerically transformed to the time domain. Finally, the necessity is shown to avoid situations where transient multiple-point-contact may occur (like rail joints) in practice. 相似文献
17.
Wheel–rail contact calculations are essential for simulating railway vehicle dynamic behavior. Currently, these simulations usually use the Hertz contact theory to calculate normal forces and Kalker's ‘FASTSIM’ program to evaluate tangential stresses. Since 1996, new methods called semi-Hertzian have appeared: 5 Kik, W. and Piotrowski, J. A fast approximate method to calculate normal load at contact between wheel and rail and creep forces during rolling. Paper presented at the 2nd Mini-conference on Contact Mechanics and Wear of Rail/Wheel Systems. July29–31, Budapest. [Google Scholar] 7 Ayasse, J. B., Chollet, H. and Maupu, J. L. 2000. Paramètres caractéristiques du contact roue-rail. Rapport de Recherche INRETS n225, ISSN 0768–9756 (in French) [Google Scholar] (STRIPES). These methods attempt to estimate the non-elliptical contact patches with a discrete extension of the Hertz theory. As a continuation of 2 Ayasse, J. B and Chollet, H. 2005. Determination of the wheel–rail contact patch in semi-Hertzian conditions. Vehicle System Dynamics, 43(3) [Google Scholar], a validation of the STRIPES method for normal problem computing on three test cases is proposed in this article. The test cases do not fulfill the hypothesis required for the Hertz theory. Then, the Kalker's FASTSIM algorithm is adapted to STRIPES patch calculus to perform tangential forces computation. This adaptation is assessed using Kalker's CONTACT algorithm. 相似文献
18.
Dynamic train–track interaction is more complex in railway turnouts (switches and crossings) than that in ordinary tangent or curved tracks. Multiple contacts between wheel and rail are common, and severe impact loads with broad frequency contents are induced, when nominal wheel–rail contact conditions are disturbed because of the continuous variation in rail profiles and the discontinuities in the crossing panel. The absence of transition curves at the entry and exit of the turnout, and the cant deficiency, leads to large wheel–rail contact forces and passenger discomfort when the train is switching into the turnout track. Two alternative multibody system (MBS) models of dynamic interaction between train and a standard turnout design are developed. The first model is derived using a commercial MBS software. The second model is based on a multibody dynamics formulation, which may account for the structural flexibility of train and track components (based on finite element models and coordinate reduction methods). The variation in rail profile is accounted for by sampling the cross-section of each rail at several positions along the turnout. Contact between the back of the wheel flange and the check rail, when the wheelset is steered through the crossing, is considered. Good agreement in results from the two models is observed when the track model is taken as rigid. 相似文献
19.
Recently, publications aiming at wheel–rail contact surveys let readers think that multi-Hertzian methods present severe drawbacks with respect to ‘virtual penetration’ methods. These surveys criticise multi-Hertzian solutions mainly because presenting ‘larger contacts overlaps’ and ‘frequent secondary contacts near the border of the first contact’, both obvious geometric possibilities of which the practical occurrence and eventual inconvenience would remain purely theoretical unless established over definite methods demonstrating poor practical results. Recent surveys all quote Piotrowski–Chollet 2005 survey of wheel–rail contact models that attempted to illustrate defective multi-Hertzian techniques by concentrating on the method initiated by Sauvage in the 1990s and further developed by Pascal. The 2005 paper not only gives no evidence of practical inconveniences of Sauvage’s method but also confuses static geometric contact overlaps with the dynamical overlapping of forces. In reality it mixes Sauvage method up with a quite different technique. Thus a clarification is now necessary by reminding what the proper Sauvage technique really is and by showing some of its practical successful applications. The present paper, focusing on determination of normal contact forces in conformal situations, intends to explain clearly the advantages of the unequivocal localisation of secondary ellipses in that multi-Hertzian method which has been developed in INRETS VOCO codes in the 1990s and successfully used by SNCF and ALSTOM in the INRETS-SNCF code, VOCODYM, and later in Pascal’s online calculation of railway elastic contacts code. It proved its effectiveness for studying freight wagons derailments as well as rail wear and head-check, unrounded wheels wear, high-speed lines’ deformations or TGV comfort. While simulating American ACELA trainsets’ behaviour on the US North-East Corridor tracks, prior to actual tests, as part of the commercial contract. It has been also a major tool for bringing back together French and American Safety Standards. 相似文献
20.
The paper proposes a mathematical model of train–turnout interaction in the mid-frequency range (0–500 Hz). The model accounts for the effects of rail profile variation along the track and of local variation of track flexibility. The proposed approach is able to represent the condition of one wheel being simultaneously in contact with more than one rail, allowing the accurate prediction of the effect of wheels being transferred from one rail to another when passing over the switch toe and the crossing nose. Comprehensive results of train–turnout interaction during the negotiation of the main and the branch lines are presented, including the effect of wear of wheel/rail profiles and presence of track misalignment. In the final part of the paper, comparisons are performed between the results of numerical simulations and line measurements performed on two different turnouts for urban railway lines, showing a good agreement between experimental and numerical results. 相似文献
|