共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
对车载激光雷达场景点云进行语义分割是自动驾驶环境感知环节的基础性工作。针对现有处理大规模自动驾驶场景点云方法对局部特征提取能力不足和难以捕捉全局上下文信息的问题,本文基于自注意力机制设计了局部和全局自注意力编码器,并搭建了特征聚合模块进行特征提取。实验结果表明,与同样采用局部特征聚合的网络RandLA-Net相比,在SemanticKITTI数据集上本文的方法可将平均交并比提升5.7个百分点,局部自注意力编码器的加入也使车辆和行人等小目标的分割精度提高2个百分点以上。 相似文献
3.
对车载激光雷达扫描得到的点云进行语义分割是保证行车安全、加强驾驶员对周边环境理解的重要手段之一。因为内存限制和大规模点云场景更加稀疏的特点,将传统神经网络的方法直接沿用到车载激光雷达扫描得到的点云场景中的效果不佳。本文中针对大规模点云的稀疏性,利用稀疏卷积神经网络对体素化点云进行特征提取。考虑到逐点处理分支抑制点云数据的密度不一致性导致的信息损失,另外设计了3D-CA和3D-SA模块,使稀疏卷积神经网络更好地提取特征。实验结果表明,与传统卷积神经网络的方法和将点云投影到平面的方法相比,使用稀疏卷积神经网络对大规模点云进行语义分割,可将平均交并比提升4.1%和3.4%,证明了该方法的有效性。 相似文献
4.
针对点云的稀疏性和无序性对目标检测准确率的影响,本文提出了一种基于虚拟点云的二阶段多模态融合网络VPC-VoxelNet。首先,利用图像检测目标信息构造虚拟点云,增加点云的密集程度,从而提高目标特征的表现;其次,增加点云特征维度以区分真实和虚拟点云,并使用含置信度编码的体素,增强点云的相关性;最后,采用虚拟点云的比例系数设计损失函数,增加图像检测有监督训练,提高二阶段网络训练效率,避免二阶段端到端网络模型存在的模型误差累计问题。该目标检测网络VPC-VoxelNet在KITTI数据集上进行了测试,检测精度优于经典三维点云检测网络和某些多传感器信息融合网络,车辆检测精度达到了86.9%。 相似文献
5.
为实现快速、自动化的道路几何信息提取和数字化建模,基于激光雷达点云提出了一套从道路语义分割、几何线形提取到集成化建模的通用框架。首先,基于空间上下文特征基础框架,将局部特征的最大值和邻域均值进行聚合以作为局部特征,使用径向分布参数与三维坐标描述全局上下文特征,构建道路语义分割网络。其次,基于道路场景分割结果,通过体素降采样和半径滤波法减少点云数据量、去除离群点,并利用可变半径Alpha Shapes (VA-Shapes)算法提取道路边线,结合获取的边线横纵坐标,计算路段几何信息(路宽、纵坡、横坡等),使用inshape函数和插值法构建交叉口的数字高程模型。最后,采用Dynamo for Revit将道路几何信息导入并生成道路路线,通过Revit软件设计道路自适应族构件及不同类别基础设施族构件,实现精细化道路数字建模。利用开源数据集Semantic3D进行训练和测试,分析与评价道路几何信息提取效果。研究结果表明:所提出的算法总体准确度为95%,路面的单类交并比为97.9%,能够很好地实现道路点云场景的自动化语义分割;相比于传统的固定半径Alpha Shapes算法,VA-Shapes算... 相似文献
6.
7.
8.
9.
10.
新一代通信技术的快速发展为车路协同感知提供了基础,可进一步提升自动驾驶车辆在复杂场景中的感知能力,现有研究对不同的协同感知信息融合模式进行了探索,但忽略了对感知精度与通信时延平衡性的分析。针对自动驾驶协同感知中点云融合模式的时延特征,本文以前融合、特征融合、后融合3种模式为研究对象,提出了基于模拟仿真的时延影响分析框架。考虑通信时延引起的协同感知结果时滞性,利用扩展卡尔曼滤波算法对存在时延的协同感知结果进行预测性补偿,创新提出了滞后补偿误差和等效时延评价指标,用以综合评价不同融合模式对协同感知结果的影响;针对不同点云融合模式的感知结果,构建了平均感知精度与平移误差分布关系模型,依据目标检测平移误差的分布特征生成带有感知误差的仿真轨迹,进而对协同感知效果进行评估。结合TrajNet++行人轨迹数据集,以不同时延参数及点云融合模式,对1 200条轨迹进行了180 000次数值仿真。结果显示,感知目标的已知轨迹长度越短、速度越高,时延对协同感知精度的影响越大,以100 ms时延下后融合为基准,当特征融合时延在500 ms以内、前融合时延在700 ms以内时,可以达到相同或更高的协同感知精度。针对目标易突然出现且速度快的复杂场景,宜采用低时延、低精度的后融合模式,反之,宜采用具有高时延、高精度的特征融合或前融合模式。本研究可为自动驾驶协同感知的点云融合模式选择提供依据。 相似文献
11.
针对沥青路面二维裂缝图像识别精度较低的问题,文中借助三维激光扫描技术,利用三维点云数据所提取的裂缝特征验证二维图像裂缝特征的准确性,同时将提取的三维点云数据裂缝指标用于深度学习的准确率提升,以此提高裂缝图像的识别准确率。首先将获取的高精度二维图像进行图像增加、去噪、分割、特征提取等,然后通过对路表三维点云数据进行分类、滤波、融合,重建沥青路面路表三维形态模型,实现沥青路面裂缝的高效高精度识别与裂缝特征参数提取,利用密集卷积神经网络(DenseNet)的裂缝图像识别算法对200张验证图像进行测试。结果表明,通过利用三维点云数据对二维图像进行辅助判别的方法,可大幅提高裂缝图像的识别准确率,具有良好的普适性。 相似文献
12.
针对重庆綦江~万盛高速公路边坡在强降雨条件下形成的坡面泥石流,采用消费级无人机航拍生成坡面泥石流点云数据。采用C++编程语言对点云数据进行切片、投影、排序、深度计算、体积计算等操作,提出了基于点云切片提取泥石流各断面侵蚀-堆积极值点平面/剖面分布、侵蚀-堆积体积等地貌特征的方法。结合该研究区进行分析可知,坡面泥石流内部存在侵蚀-堆积优势区域;该坡面泥石流侵蚀-堆积体积与平均侵蚀-堆积深度重合度高,与坡面泥石流宽度大、侵蚀深度浅的特点有关。基于点云数据处理的坡面泥石流形态特征提取方法可从不同角度对地貌特征进行分析,对坡面泥石流侵蚀-堆积关系与其产流-汇流-堆积演化过程研究具有积极意义。 相似文献
13.
现役道路基础设施管理过程中缺乏大范围区域内不同路段的现状或实时的竖向净空数字化资料,导致部分过高车辆撞击跨线桥或其他上空构造物的事故时有发生,造成了重大财产损失与人员伤亡。针对该问题,基于车载LiDAR数据构建公路竖向净空自动化评估方法框架。通过数据重构方法将复杂道路线形的车载LiDAR点云转化为简单的直线形式,利用基于线性索引的点云数据分块方法实现重构场景下车载LiDAR数据的条形、柱形与体素单元的快速分块,建立柱形单元非平面点初步滤波、基于K-Means与体素聚类的复杂LiDAR点云环境中路面优化分割流程。在基于条形单元划分提取道路边界后,利用体素聚类将路面上方点云进行划分。以提取的路面点云作为二维插值基准面,完成不同物体的竖向净空计算,并利用江苏南京市内的2条公路LiDAR数据的对算法框架进行测试。研究结果表明:所提方法在噪音存在的复杂LiDAR环境中可以有效分割出道路上方物体并完成竖向净空的计算;通过部分算法提取与人工标注结果的对比,显示公路1与公路2的竖向净空平均绝对误差分别为0.94、1.57 cm,具有较好的可靠性;在32 GB内存、Intel® Xeon® E5-1650 v4@3.6 GHz六核处理器的计算机上完成公路1与公路2竖向净空评估的平均时间分别为6.62、7.83 s·km-1,算法效率可满足大尺度场景下的公路竖向净空自动化计算;相比于已有研究方法,所提方法框架考虑了车载LiDAR点云环境内的路面上测量噪音的存在,对变宽度路面条件复杂场景下的公路竖向净空评估具有更好的适用性。 相似文献
14.
15.
路面平整度是评定道路路面质量的主要技术指标之一,传统的平整度测量方法检测效率低、劳动强度大,难以满足道路快速巡检和公路养护的需求。移动测量系统能够快速动态获取高精度道路点云数据,能详细再现道路的细节特征。因此,本文通过分析车载点云的精度特点以及国际平整度IRI的计算方法,提出一种应用车载激光点云进行路面平整度检测的方法,首先对车载点云数据进行预处理,沿轮迹带方向提取路面点;然后采用等间距邻域均值采点的方式获取路面高程值;最后使用路面高程值进行IRI计算并与高精度水准数据计算的标定结果进行对比。实验结果表明,车载移动测量系统能够用于路面平整度的快速检测。为道路三维快速巡检和公路养护提供了技术支持。 相似文献
16.
17.
18.
激光点云语义分割是自动驾驶系统中道路场景感知的重要分支。虽然主流方法将点云转换为规则的二维图像或笛卡尔栅格进行处理,减少因点云非结构化所带来的计算量,但二维图像方法不可避免地改变点云的三维几何拓扑结构,而笛卡尔栅格忽略了室外激光点云的密度不一致性,从而限制了包括行人和自行车等小物体的语义分割能力。因此,本文中提出了一种基于三维锥形栅格和稀疏卷积的激光点云语义分割方法,利用锥形栅格分区解决了点云的稀疏性和密度不一致的问题;为提高模型推理速度,设计了重参数化三维稀疏卷积网络。在SemanticKITTI和nuScenes两个大规模数据集上对所提方法进行评估。结果表明,与目前最新的点云分割方法相比,所提方法的平均交并比分别提升了1.3%和0.8%,尤其对小物体识别有显著的提升。 相似文献
19.
为快速、有效识别滑坡灾害,提高其预警预报水平,融合应用谷歌卫星地图、"天绘一号"卫星影像和无人机航拍或现场踏勘图片,对福建省三明市沙溪河两岸的典型滑坡点进行初步识辩,并结合实地踏勘对比多源影像综合提取的滑坡特征,统计该区域的典型滑坡点信息,并对典型滑坡点的形成条件、分布特征和影响因素进行分析。结果表明:融合利用滑坡影像可快速有效识辩滑坡危险点,实地踏勘有利于进一步提高识辩精度,该方法整体识辨率超过90%;地形地貌、地质环境条件、岩土体类型及人类工程活动等是影响滑坡的主要因素;降雨强度会显著诱导滑坡灾害。 相似文献
20.
伴随着无人驾驶领域的迅速发展,激光雷达(LIDRA)在这一行业上的应用越来越广泛。激光雷达的快速发展,为智能网联汽车在目标跟踪与识别等方面提供了另一种方式。文章以车载激光雷达在自动驾驶行业上的应用为切入点,介绍了车载激光雷达的三种应用算法。目标跟踪与识别算法,通过目标跟踪算法对障碍物运动状态做出估计和预测,实时评估障碍物和无人驾驶车辆的安全等级,作出相应的决策。即时定位与地图构建(SLAM)相关算法,应用于解决机器人在未知环境中定位自身位置和姿态的一种高级算法。点云分割往往是物体识别、地图构建的基础,通过对六种常用分割算法的描述,分析了算法各自的特点,为不同应用场景算法的选择提供了一定参考。 相似文献