首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究温度对长大上坡路段沥青混凝土路面动力响应的影响规律,建立了一种移动荷载下长大上坡沥青混凝土路面动力响应模型,分析了温度对路面各动力响应参数的影响规律.结果表明:温度对长大上坡路段沥青混凝土路面动力响应影响很大;对于所研究的路面结构和坡度,在标准轴载作用下,当温度从10℃增加到30℃时,其面层底部纵向剪应变由65.61με增加到142.01με,横向剪应变由78.72με增加到175.13με,垂向压应变由-63.83με增加到-127.99με,远远大于面层底部的弯拉应变.过大的面层底部纵、横向剪应变和垂向压应变容易引起路面出现推移、拥包和车辙,在长大上坡路段路面设计时应充分考虑面层材料的耐高温性能和面层底部的抗剪强度.  相似文献   

2.
基层结构参数对沥青混凝土路面力学响应的影响分析   总被引:1,自引:0,他引:1  
左俊朝  周正峰  曹林涛 《公路》2012,(10):28-33
基于有限元软件ABAQUS,建立沥青混凝土路面结构三维有限元模型,分析了基层结构参数对沥青混凝土路面力学响应的影响。揭示了基层厚度、基层模量和基层与面层或底基层接触条件变化,对路表弯沉、面层层底拉应力和基层层底拉应力等路面力学响应量的影响规律;结合正交试验,提出了在基层结构参数中,路表弯沉受基层厚度影响显著,面层层底拉应力受基层与面层之间的接触条件影响最为显著,基层层底拉应力受基层模量影响显著。  相似文献   

3.
在分析车辆荷载作用下路面结构响应时,车辆荷载通常被简化为静止、振动和匀速移动3类形式.为了准确把握荷载不同简化形式下路面结构响应的差异,根据柔性路面的典型结构形式,建立了路面结构的离散元模型;采用离散元颗粒流软件,分别模拟了静止、振动和移动荷载对路面结构的作用,并对比分析了不同荷载形式下路面结构的力学响应.结果表明,静止、振动荷载只能反映移动荷载作用于路面结构后最大响应,亦即移动荷载越过路面结构某位置的瞬间,静止荷载响应与振动和移动荷载响应的峰值相当;静止、振动荷载不能反映移动荷载对路面结构引起的拉、压交替响应,以及车辆移动引起的路面结构内水平剪应力不同方向的两次作用.  相似文献   

4.
水泥混凝土沥青混凝土复合式路面的荷载应力分析   总被引:19,自引:0,他引:19  
本文采用弹性地基上三维空间有限元分析方法,对CC+AC复合式路面进行了荷载应力分析,得出了最不利荷位,分析了AC层对抵抗车轮荷载的贡献和CC板接缝上AC层的受力特性。  相似文献   

5.
车辆荷载作用下沥青混凝土路面结构的应力响应分析   总被引:1,自引:0,他引:1  
借助大型有限元软件ABAQUS,运用三维动力有限元的方法,建立了移动荷载作用下基于土基横观各向同性的沥青混凝土路面结构的三维仿真模型,并编制了Dload和Utracload子程序来施加移动荷载.通过有限元Standard计算模块,分析和比较了移动荷载下车辆正常行驶、减速和加速情况时路面结构内部应力响应规律.分析结果表明...  相似文献   

6.
为研究和改善行车水平荷载对沥青混凝土路面结构受力的影响,采用三维有限元方法分析计算了静载作用下各大小水平荷载作用时沥青混凝土路面结构的力学响应规律,对比分析了高模量沥青混凝土(HMAC)设置在路面结构不同层位对水平荷载和垂直荷载综合作用下路面结构力学响应的影响.结果表明:水平荷载的影响范围主要集中在路面上部6 cm范围以内;在较大水平荷载作用下,路面结构最大剪应力和最大拉应力峰值增大显著,容易造成路面结构的剪切和拉裂破坏;面上面层设置HMAC和上中面层设置HMAC能够有效地改善这些局部路段路面结构的抗剪切和抗拉裂性能,且在效果上后者优于前者.  相似文献   

7.
沥青混凝土路面动力特性数值模拟研究   总被引:1,自引:0,他引:1  
为了研究路面结构层厚度、模量、加载速度等因素对FWD作用下沥青混凝土路面动力特性的影响,基于有限元原理建立沥青混凝土路面动力特性模型,并通过与实测数据进行对比分析验证所建模型的精度,最后对FWD作用下的沥青混凝土路面弯沉、应力等动力特性及路面厚度、模量、加载速度对其动力特性的影响进行了研究,重点研究了不同结构层厚度及加载速度下面层、基层和底基层各自的应力变化情况以及路面弯沉变化趋势.研究表明:结构层厚度、设计参数(模量等)、加载速度等因素的变化对沥青混凝土路面动力特性均存在不同程度的影响.研究结果有助于根据路面结构的应力及变形特点进行路基路面结构设计,同时为分析路面损坏的原因及采取何种预防措施提供参考及依据.  相似文献   

8.
软土地基上沥青混凝土路面动力分析   总被引:5,自引:0,他引:5  
王金昌  朱向荣 《公路》2004,(3):6-11
基于动力学和弹塑性力学理论,采用轴对称有限单元法系统地分析了软土地基上半刚性基层沥青混凝土路面结构体的工作性状。以不同位置的竖向位移作为表征参量,探讨了不同车辆荷载周期、沥青混凝土的回弹模量、半刚性基层材料回弹模量和复合地基厚度等变化对表征参量的影响。本文结论可为软土地基上道路结构体工作性状评价及FWD的反分析提供有益参考。  相似文献   

9.
阐述了路面基层的作用和沥青混凝土路面基层必须具备的基本条件,同时根据地方路改造在路面基层施工中存在的普遍问题。提出了提高基层施工质量的建议。  相似文献   

10.
杨春风  王雷 《公路》2012,(4):74-77
为更准确地模拟沥青混凝土路面实际的受力状态,基于弹性层状理论,借助大型有限元分析软件ANSYS建立了沥青混凝土路面三维有限元黏弹性模型,并对其施加非均布垂直荷载和切向摩擦行为的共同影响,分析车辆在匀速行驶时,沥青混凝土路面在不同载重车辆荷载作用下的动力响应.结果表明,最大纵向拉应力位于底基层中部,最大纵向压应力位于沥青混凝土面层.存在一中性层,其上结构主要承受压应力,其下结构主要承受拉应力.中性层位于基层中部附近.最大拉应力为0.031 MPa,远小于容许拉应力0.081 MPa,故路面结构破坏不是脆性破坏引起的,而是与疲劳破坏有很大关系.超载并不是造成路面损坏的唯一因素.  相似文献   

11.
水和动态荷载耦合作用是沥青混凝土路面发生水损害的主要原因.首先基于多孔介质理论,假定路面结构中的沥青混凝土材料为完全饱水的多孔介质材料,对两种典型路面结构--半刚性沥青混凝土路面、具有柔性基层的半刚性沥青混凝土路面分别建立了三维有限元模型;而后对比分析了两种路面结构在动态荷载作用下的竖向应力、竖向应变、孔隙水压力的空间...  相似文献   

12.
路面结构动力响应仿真与参数分析研究   总被引:7,自引:0,他引:7  
运用均匀设计方法安排计算机辅助试验,对各种结构组合情况的路面动力有限元模型进行了求解,运用人工神经网络原理技术,开展路面结构动力响应仿真和路面结构动态参数反分析,为进一步分析路面结构动力特性和改进路面结构性能评价策略提供帮助。  相似文献   

13.
赵立铨  孙玉涛 《公路》2007,(9):101-104
重载作用会造成路面结构的强度破坏及使用寿命的缩短。根据对某沥青混凝土路面的现场勘察试验,认为重载车辆作用是导致路面损害的主要原因,初步揭示了在重载作用下沥青混凝土路面各结构层的应力特点,分析了重载作用下路面病害的原因,并提出了防治措施建议。  相似文献   

14.
高一新  刘国慧 《公路》2002,(10):7-10
重点介绍了沥青混凝土路面的规律性及破坏机理,为解决路面损坏问题提供理论论据。  相似文献   

15.
沥青混凝土路面平整度影响因素分析   总被引:5,自引:0,他引:5  
从路基和结构物的基础到沥青混凝土路面面层的施工工艺、施工质量、施工设备的 选型和配套、沥青混合料等全面地分析了影响沥青混凝土路面的早期和后期平整度因素。并明确 了主要控制对象。  相似文献   

16.
针对重载车辆,基于有限元法,建立了典型沥青混凝土路面结构的三维有限元分析模型,分析了不同轴载与轴型作用下的沥青路面路表弯沉、面层和基层的层底应力分布状况.结果表明:路表弯沉、面层和基层的层底应力随轴重的增大近似成同比例增大,路表弯沉随轴数的增多而增大,面层层底应力受轴数的影响很小,而基层层底应力受轴数的增多反而有所减小...  相似文献   

17.
针对路基不均匀沉降条件下路面结构破坏机理难以解析的现状,引入数值分析方法,建立了沥青混凝土路面结构对路基横向不均匀沉降力学响应的有限元模型,重点针对路基两侧沉降、一侧沉降和中心沉降3种不均匀沉降形式进行分析,主要研究不均匀沉降量及路面结构参数对路面结构破坏的影响。  相似文献   

18.
选用沥青混凝土路面还是水泥混凝土路面   总被引:1,自引:0,他引:1  
郭正言 《国外公路》1997,17(3):23-25
奥地利、美国、芬兰等国通过对沥青混凝土与水泥混凝土路面的研究比较,认为这两类路面都应该使用,应根据修建及管理养护的费用,交通量等综合考虑来选用路面类型,指出偏见是有害的。  相似文献   

19.
20.
集料对沥青混凝土路面车辙的影响   总被引:8,自引:0,他引:8  
吴启宏 《国外公路》1998,18(1):39-47
从形成车辙的沥青混凝土路面上收集路面钻件还到两年的时间,实验室试验揭示了形成车辙的普遍原因,如沥青含量过高,细颗粒集料以及天然的,圆状集料颗粒的百分率高等,设计开始一项试验计划以量化增加天然(未破碎)集料颗粒的数量取代破碎颗粒,对实验室内制备的沥青混凝土混合料塑性形状的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号