首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper examines data about walking trips in the US Department of Transportation’s 2001 National Household Travel Survey. The paper describes and critiques the methods used in the survey to collect data on walking. Using these data, we summarize the extent of walking, the duration and distance of walk trips, and variations in walking behavior according to geographic and socio-demographic factors. The results show that most Americans do not walk at all, but those who do average close to thirty minutes of walking a day. Walk trips averaged about a half-mile, but the median trip distance was a quarter of a mile. A significant percentage of the time Americans’ walk was spent traveling to and from transit trips. Binary logit models are used for examining utility and recreational walk trips and show a positive relationship between walking and population density for both. For recreational trips, this effect shows up at the extreme low and high ends of density. For utility trips, the odds of reporting a walk trip increase with each density category, but the effect is most pronounced at the highest density categories. At the highest densities, a large portion of the effect of density occurs via the intermediary of car ownership. Educational attainment has a strong effect on propensity to take walk trips, for both for utility and recreation. Higher income was associated with fewer utility walk trips but more recreational trips. Asians, Latinos, and blacks were less likely to take utility walk trips than whites, after controlling for income, education, density, and car ownership. The ethnic differences in walking are even larger for recreational trips.  相似文献   

2.
Before the implementation of a parking information system, it is necessary to evaluate the parking difficulty, technology choice, and system costs. In this study, the parking problem was quantified by asking parkers to express their parking difficulties in five scaled levels from the least to the most difficult. An ordered Probit model was developed to identify the factors that influence a parker to feel the parking difficulty. The results indicate that the amount of parking information parkers had before their trips was directly related to their parking search time, which in turn, influenced their perceptions of parking difficulty. Parkers' preferences to parking information technologies were identified based on developing binary and multinomial probit models. The results indicate that personal business trips and older persons would like to use the kiosk, while the more educated and males would not. Trips with shopping and social/recreation purposes and the drivers who had visited the destination areas frequently would like to choose roadside display. Drivers who had planned their parking and had Internet access would use in‐vehicle device. The system cost was estimated based on the cost for each component of the system. The results show that providing en‐route parking search information through roadside displays is more expensive than providing pre‐trip information through a web site.  相似文献   

3.
The literature on car cruising is dominated by theory. We examine cruising for parking using a nation-wide random sample of car trips. We exclude employer-provided and residential parking. We focus on the Netherlands, where levels of on-street and off-street parking prices are locally the same. We demonstrate then that due to this price setting the average cruising time in the Netherlands is only 36 s per car trip. Furthermore, we show that cruising is not random. It is more common in (large) cities that receive more car trips, particularly for shopping and leisure activities. Cruising time increases with travel duration as well as with parking duration. Cruising has a distinctive pattern over the day with a peak in the morning, so the order of arrival is essential to parking. Because cruising has a spatial and time component, policies may be considered that reduce cruising time through flexible pricing of parking or improved information about vacant parking spaces.  相似文献   

4.
This paper analyzes transportation mode choice for short home-based trips using a 1999 activity survey from the Puget Sound region of Washington State, U.S.A. Short trips are defined as those within the 95th percentile walking distance in the data, here 1.40 miles (2.25 km). The mean walking distance was 0.4 miles (0.6 km). The mode distribution was automobile (75%), walk (23%), bicycle (1%), and bus (1%). Walk and bicycle are found less likely as the individual’s age increases. People are more likely to drive if they can or are accustomed to. People in multi-person families are less likely to walk or use bus, especially families with children. An environment that attracts people’s interest and provides activity opportunities encourages people to walk on short trips. Influencing people’s choice of transport mode on short trips should be an important part of efforts encouraging the use of non-automobile alternatives.
Gudmundur F. UlfarssonEmail:
  相似文献   

5.
Non-motorised transport modes such as walking and biking are environmentally friendly, cheap and reasonably fast alternatives for trips up to a distance of some 3.5 km. Their importance for longer trips follows when a multimodal perspective is used: the use of the car implies short walking trips to a parking place. For public transport the same holds true for walking and biking to a public transport stop. Recognition of the multimodal character of these trips means that the number of moves made by pedestrians increases with a factor of about 6; the increase in distance is about 40%. Implications are discussed for average travel speeds, daily travel-time budgets, parking policies and policies to stimulate public transport.  相似文献   

6.
We consider in this paper the problem of determining intermediate origin-destination matrices for composite mode trips that involve a trip by private car to a parking facility and the continuation of the trip to the destination either by walking or by a transit mode. The intermediate origin-destination matrices relate to each component of the composite mode trip: a matrix from the trip origins to intermediate destinations which are parking lots and a matrix from the parking lots to the final destinations. The approach that we propose to solve this problem is to modify the entropy based trip distribution models to consider inequality constraints related to parking lot capacities. Such models may be easily calibrated by using well known calibration methods or generalization of these methods and may be easily solved by applying a primal feasible direction method of nonlinear programming.  相似文献   

7.
Interest in vehicle automation has been growing in recent years, especially with the very visible Google car project. Although full automation is not yet a reality there has been significant research on the impacts of self-driving vehicles on traffic flows, mainly on interurban roads. However, little attention has been given to what could happen to urban mobility when all vehicles are automated. In this paper we propose a new method to study how replacing privately owned conventional vehicles with automated ones affects traffic delays and parking demand in a city. The model solves what we designate as the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP), which dynamically assigns family trips in their automated vehicles in an urban road network from a user equilibrium perspective where, in equilibrium, households with similar trips should have similar transport costs. Automation allows a vehicle to travel without passengers to satisfy multiple household trips and, if needed, to park itself in any of the network nodes to benefit from lower parking charges. Nonetheless, the empty trips can also represent added congestion in the network. The model was applied to a case study based on the city of Delft, the Netherlands. Several experiments were done, comparing scenarios where parking policies and value of travel time (VTT) are changed. The model shows good equilibrium convergence with a small difference between the general costs of traveling for similar families. We were able to conclude that vehicle automation reduces generalized transport costs, satisfies more trips by car and is associated with increased traffic congestion because empty vehicles have to be relocated. It is possible for a city to charge for all street parking and create free central parking lots that will keep total transport costs the same, or reduce them. However, this will add to congestion as traffic competes to access those central nodes. In a scenario where a lower VTT is experienced by the travelers, because of the added comfort of vehicle automation, the car mode share increases. Nevertheless this may help to reduce traffic congestion because some vehicles will reroute to satisfy trips which previously were not cost efficient to be done by car. Placing the free parking in the outskirts is less attractive due to the extra kilometers but with a lower VTT the same private vehicle demand would be attended with the advantage of freeing space in the city center.  相似文献   

8.
Most research on walking behavior has focused on mode choice or walk trip frequency. In contrast, this study is one of the first to analyze and model the destination choice behaviors of pedestrians within an entire region. Using about 4500 walk trips from a 2011 household travel survey in the Portland, Oregon, region, we estimated multinomial logit pedestrian destination choice models for six trip purposes. Independent variables included terms for impedance (walk trip distance), size (employment by type, households), supportive pedestrian environments (parks, a pedestrian index of the environment variable called PIE), barriers to walking (terrain, industrial-type employment), and traveler characteristics. Unique to this study was the use of small-scale destination zone alternatives. Distance was a significant deterrent to pedestrian destination choice, and people in carless or childless households were less sensitive to distance for some purposes. Employment (especially retail) was a strong attractor: doubling the number of jobs nearly doubled the odds of choosing a destination for home-based shopping walk trips. More attractive pedestrian environments were also positively associated with pedestrian destination choice after controlling for other factors. These results shed light on determinants of pedestrian destination choice behaviors, and sensitivities in the models highlight potential policy-levers to increase walking activity. In addition, the destination choice models can be applied in practice within existing regional travel demand models or as pedestrian planning tools to evaluate land use and transportation policy and investment scenarios.  相似文献   

9.
Urban planners typically set the minimum parking requirements for every land use to satisfy the peak demand for free parking. As a result, parking is free for 99% of automobile trips in the United States. Minimum parking requirements increase the supply and reduce the price – but not the cost – of parking. They bundle the cost of parking spaces into the cost of development, and thereby increase the prices of all the goods and services sold at the sites that offer free parking. Cars have many external costs, but the external cost of parking in cities may be greater than all the other external costs combined. To prevent spillover, cities could price on-street parking rather than require off-street parking. Compared with minimum parking requirements, market prices can allocate parking spaces fairly and efficiently.  相似文献   

10.
This paper considers both the access and egress stages as an entire process to analyze the satisfaction levels of commuters with metro commuter journeys. Based on a survey in Nanjing, China, seven intermodal travel groups are employed as targets for this analysis. The groups include Walk–Metro–Walk, Walk–Metro–Bus, Bike–Metro–Walk, Bike–Metro–Bus, Bus–Metro–Walk, Bus–Metro–Bus and Car–Metro–Walk, which are named according to the modes of transportation that are employed for access and egress trips. Binary logit models are developed for each group to identify the main factors of satisfaction level. The results show that access and egress stages serve important but different roles in the seven groups. Facility service qualities in two stages are the primary factors that affect overall satisfaction. The groups with same access or egress modes have significantly different core factors. Access by bike and bike–metro–transit users are concerned with bike parking safety, whereas bike–metro–walk users value parking spaces near metro stations. With two transfers between bus and metro, transit–metro–transit users indicate that the weak point in the access stage is the crowded spaces on buses. However, transit–metro–walk users value bus on-time performance, which is also valued by groups with metro–bus egress transfers. For egress by walking, commuters that use motorized modes for access are concerned with the egress walking environment, whereas users of non-motorized access modes are more concerned with egress walking spaces. The findings of this study are helpful for policy developments than can improve public satisfaction with commutes by urban metro.  相似文献   

11.
A stated preference experiment was performed in Calgary in Canada to examine how people are influenced in the selection of a departure time for a hypothetical trip to see a movie. A total of 635 complete observations were obtained. In each observation the respondent was presented with a set of possible departure time scenarios and asked to indicate the order of preference for these scenarios. Each scenario was described by specifying the automobile travel time, the expected arrival time relative to the movie start time, the parking cost, the probability of being at least ten minutes late for the movie and the length of time the movie had been running. This forced the respondent to trade off between conditions regarding these attributes. Age, gender and frequency of movie attendance were also recorded. The observations thus obtained were used to estimate the parameter values for a range of alternative utility functions in logit models representing this choice behaviour. The results indicate that all of the attributes included have significant effects on departure time choice in the situation being considered. They also indicate that travellers are prepared to arrive roughly two minutes early for each minute of travel time saved; that the money value of driving time for trips to recreational activities is about half that for trips to work; that one additional percent in the probability of arriving late is equivalent to roughly 0.20 Canadian dollars or 1.93 minutes drive time; and that there is a preference for a non-zero expected early arrival time regardless of the associated probability of arriving late. Some of these results are novel and others are consistent with findings for work trips in work done by others, which is seen to add credence to the approach being used here.  相似文献   

12.
In this paper, the effects of a inter-urban carsharing program on users’ mode choice behaviour were investigated and modelled through specification, calibration and validation of different modelling approaches founded on the behavioural paradigm of the random utility theory. To this end, switching models conditional on the usually chosen transport mode, unconditional switching models and holding models were investigated and compared. The aim was threefold: (i) to analyse the feasibility of a inter-urban carsharing program; (ii) to investigate the main determinants of the choice behaviour; (iii) to compare different approaches (switching vs. holding; conditional vs. unconditional); (iv) to investigate different modelling solutions within the random utility framework (homoscedastic, heteroscedastic and cross-correlated closed-form solutions). The set of models was calibrated on a stated preferences survey carried out on users commuting within the metropolitan area of Salerno, in particular with regard to the home-to-work trips from/to Salerno (the capital city of the Salerno province) to/from the three main municipalities belonging to the metropolitan area of Salerno. All of the involved municipalities significantly interact each other, the average trip length is about 30 km a day and all are served by public transport. The proposed carsharing program was a one-way service, working alongside public transport, with the possibility of sharing the same car among different users, with free parking slots and free access to the existent restricted traffic areas. Results indicated that the inter-urban carsharing service may be a substitute of the car transport mode, but also it could be a complementary alternative to the transit system in those time periods in which the service is not guaranteed or efficient. Estimation results highlighted that the conditional switching approach is the most effective one, whereas travel monetary cost, access time to carsharing parking slots, gender, age, trip frequency, car availability and the type of trip (home-based) were the most significant attributes. Elasticity results showed that access time to the parking slots predominantly influences choice probability for bus and carpool users; change in carsharing travel costs mainly affects carpool users; change in travel costs of the usually chosen transport mode mainly affects car and carpool users.  相似文献   

13.
Parking surveys provide quantitative data describing the spatial and temporal utilization of parking spaces within an area of interest. These surveys are important tools for parking supply management and infrastructure planning. Parking studies have typically been performed by tabulating observations by hand, limiting temporal resolution due to high labor cost. This paper investigates the possibility of automating the data gathering and information extraction in a proof of concept study using a two-dimensional scanning Light Detection and Ranging (LIDAR) sensor mounted on a vehicle, though the work is compatible with other ranging sensors, e.g., stereo vision. This study examines parallel parking in the opposing direction of travel. The ranging measurements are processed to estimate the location of the curb and the presence of objects in the road. Occlusion and location reasoning are then applied to determine which of the objects are vehicles, and whether a given vehicle is parked or is in the traffic-stream. The occupancy of the parking area, vehicle size, and vehicle-to-vehicle gaps are then measured. The algorithm was applied to an area with unmarked, on-street parking near a large university campus. Vehicle counts from 29 trips over 4 years were compared against concurrent ground truth with favorable results. The approach can also be applied to monitor parking in the direction of travel, eliminating the possibility of occlusions and simplifying the processing.  相似文献   

14.
When total parking supply in an urban downtown area is insufficient, morning commuters would choose their departure times not only to trade off bottleneck congestion and schedule delays, but also to secure a parking space. Recent studies found that an appropriate combination of reserved and unreserved parking spaces can spread the departures of those morning commuters and hence reduce their total travel cost. To further mitigate both traffic congestion and social cost from competition for parking, this study considers a parking reservation scheme with expiration times, where commuters with a parking reservation have to arrive at parking spaces for the reservation before a predetermined expiration time. We first show that if all parking reservations have the same expiration time, it is socially preferable to set the reservations to be non-expirable, i.e., without expiration time. However, if differentiated expiration times are properly designed, the total travel cost can be further reduced as compared with the reservation scheme without expiration time, since the peak will be further smoothed out. We explore socially desirable equilibrium flow patterns under the parking reservation scheme with differentiated expiration times. Finally, efficiencies of the reservation schemes are examined.  相似文献   

15.
This paper analyzes the transferability of a composite walkability index, the Pedestrian Index of the Environment (PIE), to the Greater Montréal Area (GMA). The PIE was developed in Portland, Oregon, and is based on proprietary data. It combines six urban form variables into a score ranging from 20 to 100. The measure introduces several methodological refinements which have not been applied concurrently in previous efforts: a wide coverage of the different dimensions of the urban form, together with the use of a distance-based decay function and modelling-based weighing of the variables.This measure is applied to the GMA using local data in order to evaluate the feasibility of its transfer (the possibility of locally replicating the measure). It is then included in a series of mode choice models to assess its transferability (the capacity of the measure to describe walkability and predict mode choice in another urban area). The models, segmented by trip distance or trip purpose, are estimated and validated against observed trip data from the 2013 Origin-Destination survey.Significant positive correlation is found between the PIE and the choice of walking for short trips, for all purposes as well as for four specific trip purposes. The inclusion of the PIE also improves the accuracy of the modelling process as well as the prediction of the choice of walking for short trips. The PIE can therefore be used in the GMA, and potentially in other metropolitan areas, to improve the modelling of travel behavior for short trips.  相似文献   

16.
Why do people use their cars for short trips?   总被引:4,自引:0,他引:4  
Mackett  Roger L. 《Transportation》2003,30(3):329-349
  相似文献   

17.
A geo-positioning satellite (GPS)-based survey, using a web-based prompted recall tool, was conducted on a sample of 94 students at the University of Toronto from November 2008 to April 2009. The sample included students with and without telephone land lines, allowing for a statistical comparison of demographic and travel behaviour attributes. The same subjects simultaneously completed a traditional trip reporting survey, modelled on the household travel survey in Toronto, allowing for a comparison between the travel behaviour information obtained from the GPS and that reported by the participants in the traditional survey. Students with a land line are more likely to live in houses, with parents, and to live in suburban areas than students without a land line. They also make fewer trips in total, fewer discretionary trips, more transit and auto trips and fewer active trips than students without a land line. By comparing questionnaire-based data and GPS data, we found that most participants reported in the questionnaire either the same number of GPS-based trips or fewer. On average, the GPS survey captured 1.29 more daily trips per participant than the corresponding trips reported in the questionnaire.  相似文献   

18.
Applications of dynamic network equilibrium models have, mostly, considered the unit of traffic demand either as one-way trip, or as multiple independent trips. However, individuals’ travel patterns typically follow a sequence of trips chained together. In this study we aim at developing a general simulation-based dynamic network equilibrium algorithm for assignment of activity-trip chain demand. The trip chain of each individual trip maker is defined by the departure time at origin, sequence of activity destination locations, including the location of their intermediate destinations and their final destination, and activity duration at each of the intermediate destinations. Spatial and temporal dependency of subsequent trips on each other necessitate time and memory consuming calculations and storage of node-to-node time-dependent least generalized cost path trees, which is not practical for very large metropolitan area networks. We first propose a reformulation of the trip-based demand gap function formulation for the variational inequality formulation of the Bi-criterion Dynamic User Equilibrium (BDUE) problem. Next, we propose a solution algorithm for solving the BDUE problem with daily chain of activity-trips. Implementation of the algorithm for very large networks circumvents the need to store memory-intensive node-to-node time-dependent shortest path trees by implementing a destination-based time-dependent least generalized cost path finding algorithm, while maintaining the spatial and temporal dependency of subsequent trips. Numerical results for a real-world large scale network suggest that recognizing the dependency of multiple trips of a chain, and maintaining the departure time consistency of subsequent trips provide sharper drops in gap values, hence, the convergence could be achieved faster (compared to when trips are considered independent of each other).  相似文献   

19.
The delay costs of traffic disruptions and congestion and the value of travel time reliability are typically evaluated using single trip scheduling models, which treat the trip in isolation of previous and subsequent trips and activities. In practice, however, when activity scheduling to some extent is flexible, the impact of delay on one trip will depend on the actual and predicted travel time on itself as well as other trips, which is important to consider for long-lasting disturbances and when assessing the value of travel information. In this paper we extend the single trip approach into a two trips chain and activity scheduling model. Preferences are represented as marginal activity utility functions that take scheduling flexibility into account. We analytically derive trip timing optimality conditions, the value of travel time and schedule adjustments in response to travel time increases. We show how the single trip models are special cases of the present model and can be generalized to a setting with trip chains and flexible scheduling. We investigate numerically how the delay cost depends on the delay duration and its distribution on different trips during the day, the accuracy of delay prediction and travel information, and the scheduling flexibility of work hours. The extension of the model framework to more complex schedules is discussed.  相似文献   

20.
In this paper, we study the economics of parking provision for the morning commute, where all the parking lots are owned and operated by private operators. The parking capacity allocations, parking fees and access times are considered in a parking market. First we solve the parking market equilibrium without regulatory intervention, revealing four types of competitive equilibrium. Only one of the four types of equilibrium, however, is found to be stable and realistic, and under it each parking area is preferred by the commuters during certain time periods. Compared to the case without parking choice, provision of parking through a competitive market is able to reduce commuters’ travel cost and queuing delay, but it does not necessarily lead to the most desirable market outcome that minimizes social cost or commuter cost. This issue can be addressed through market regulations, such as price-ceiling, capacity-floor or capacity-ceiling, and a quantity tax/subsidy regulation. It is found that both price-ceiling and quantity tax/subsidy regulations can efficiently reduce both the system cost and commuter cost under certain conditions, and help ensure the stability of the parking market. Numerical examples are also provided to illustrate these findings and furthermore, how a price ceiling or a quantity tax/subsidy should be set in a parking market under realistic model parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号