首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
吕飞  徐超  张奘 《城市道桥与防洪》2020,(4):119-121,I0012
上海市松浦大桥为大修改建工程,反顶施工关键技术决定着桥面板安装施工质量。为了满足施工需求,设置了“钢丝绳型”反顶装置。该型反顶装置主要由反顶桁架、千斤顶、拉索、吊耳4部分组成,其中千斤顶与桁架法兰连接,拉索与千斤顶通过顶部轴承滚轮连接,并与桥面板吊耳通过卸扣连接;施工时由千斤顶顶升提供竖向预拉力,并通过轴承滚轮、钢丝绳、吊耳传递至桥面板横梁。施工过程中反顶架主体结构受力安全、施工方便、施工工效高,各项要求均满足设计规定要求。  相似文献   

2.
重庆牛角沱嘉陵江公路桥正桥为(68+80+88+80+68)m连续钢桁梁桥,桥面行车道板和人行道板均为200级钢筋混凝土结构。大桥运营52年后,检测发现行车道严重网裂,人行道渗水劣化,影响结构耐久性和承载力。维修方案为将原行车道板更换为正交异性钢桥面板,将原人行道板更换为预制C40钢筋混凝土板,人行道纵梁更换为462mm×200mm×8 000mm型钢钢纵梁。维修施工时,分块切割原行车道和人行道板,采用35t汽车吊吊装运走;设置正交异性钢桥面板支座体系(包括钢支座、抗拉拔装置和纵向限位装置);采用汽车吊与架板机配合方式,逐块安装200块正交异性钢桥面板;采用25t汽车吊吊装人行道钢纵梁和人行道板;桥面板安装完后,进行铺装材料施工,实现桥面系整体更新加固,提高桥梁荷载等级。  相似文献   

3.
针对松浦大桥上部桥面系钢-混凝土正交异性组合桥面板节段预制及施工过程中混凝土桥面板横桥向受拉情况较为严重的情况,分析了包括少支点支撑下浇筑预制、厂内预弯以及反顶架等优化措施的理论效果及可行性,并得到了较为完善的宽幅组合桥面板抗裂控制方案及优化施工方案,并针对该方案进行了有限元受力分析研究及变形控制研究,进一步验证了该桥面板抗裂控制及优化方法的可行性及可推广性,为国内外同类桥梁的设计及施工提供理论参考依据与借鉴。  相似文献   

4.
松浦大桥为一座双层公铁两用桥,上部结构为两联96m+112m连续铆接三角形钢桁架,2012年下层铁路停止运营,对该桥进行改造,要求边通行边施工。在上层施工过程中需要在上下层间设置作业平台,通过方案比选确定采用双层桁架式移动作业平台方案,该平台为分离式模块化移动操作平台,两侧人行道上作业平台处于悬臂状态,按照模块化分段设计加工,可沿全桥纵向移动,人行道、非机动车道平台横向之间架设1.2m宽人行通道,满足钢结构设计规范要求。平台按模块分段拼装好后,通过汽车吊或电动葫芦整节段提升、下放的方式进行安装及拆除施工,施工工效高;施工过程中作业平台主体结构受力安全,构件应力及稳定性均满足要求。  相似文献   

5.
芜湖长江大桥公路面为钢桁结合梁,采用预制桥面板与钢桁梁结合,介绍其桥面板的构造,现场预制、起吊、转运和架设施工。  相似文献   

6.
王俊生 《城市道桥与防洪》2020,(5):202-205,M0021
从桥梁全寿命经济性设计观点出发,提出组合梁混凝土桥面板可更换方案,基于该方案,对桥面板更换过程中桥梁结构的受力以及不同的更换顺序对钢结构的影响进行了研究,从施工操作简单、结构安全性能佳的角度提出了桥面板更换的最优策略,确保大桥在维护特别是桥面板更换时的结构安全,同时保证大桥的百年寿命要求。  相似文献   

7.
平潭海峡公铁大桥3座通航孔桥均为钢桁混合梁斜拉桥,桥塔墩墩顶节段及辅助跨大节段钢梁均采用墩旁托架辅助安装。墩旁托架采用空间异型结构,由钢管支架和滑道梁结构组成。施工前采用MIDAS Civil有限元软件建立墩旁托架模型进行施工过程分析,结果表明墩旁托架结构满足施工要求。墩旁托架采用工厂预制组拼、现场整体吊装的方案施工,现场一次快速安装到位。在墩旁托架施工过程中,单元件制作及组拼均在工厂内进行,保证了制作精度,减少了现场工作量;托架采用大型浮吊整体吊装,在空中通过浮吊多钩配合实现其竖向及水平转体,快速将其调整至安装姿态;墩旁托架悬臂部分平联提前安装,在底部承台预埋件上焊接下放导向限位装置,提高了安装精度。  相似文献   

8.
在墩旁托架的最外侧组拼钢桁梁节段单元,每组拼1个节间即通过千斤顶纵向拖拉1个节间长度,如此循环完成武汉天兴洲公铁两用长江大桥3号主塔墩墩顶4节间钢桁梁架设,解决了倒Y形主塔下方吊装的难题.  相似文献   

9.
介绍武汉天兴洲公铁两用长江大桥主桥上部结构施工方案,包括主塔施工、钢梁架设、斜拉索安装、桥面板安装以及塔梁同步施工技术。  相似文献   

10.
黄冈公铁两用长江大桥主桥采用双塔双索面斜主桁双层桥面钢桁梁斜拉桥,具有世界同类型桥梁主跨、斜主桁倾斜角度、斜拉索破断力和拉压支座抗拉吨位四项之最。该桥采用临时栽桩法确保主墩基础施工时围堰安全渡洪;将重型冲击钻开孔和大扭矩旋转钻机清水钻孔相结合实现快速成桩;6m节段液压爬模和上横梁与上塔柱异步施工方法实现桥塔快速化施工;研制专用组装胎架和钻孔胎模等工装确保平行四边形杆件制造精度;架梁吊机直接架设桥塔区钢桁梁,采用多角度空间斜腹杆吊具、整体可移动施工脚手及横向抗风牛腿装置确保钢桁梁架设的安全及成桥线形流畅;采用新型冷铸填料配方研制出PESC7-475斜拉索;通过21m长的软牵引实现斜拉索塔端挂设张拉;引桥双层混凝土连续箱梁采用逆作法施工;无中间支墩的整孔双层贝雷梁支架法施工32m跨公路连续梁。实践表明,该桥施工形成的一系列新技术成果,能有效解决施工难题、降低安全质量风险、缩短工期和节约成本。  相似文献   

11.
郑州黄河公铁两用桥连续钢桁梁悬臂拼装关键技术   总被引:7,自引:6,他引:1  
郑州黄河公铁两用桥主桥长1 680 m,分2联布置,第2联采用5×120 m连续钢桁结合梁桥。针对第2联钢桁梁结构特点,采用在陆地上设置龙门吊机起吊、在龙门吊机上设置电动葫芦辅助起吊、从12号墩往7号墩悬臂拼装的方案。施工过程中通过冲钉选用、空间斜腹杆安装对位、摩擦面保护、钢桁梁平面及竖向线形调整、三主桁高差调整等关键技术使第2联钢桁梁中线偏位、三主桁高差、钢梁竖向线形等均得到较好控制。  相似文献   

12.
郑州黄河公铁两用桥是斜边桁无竖杆的三主桁、单索面多塔斜拉桥,为了使该桥建成后达到设计目标受力状态,对其施工全过程进行控制,钢梁顶推过程中以最大悬臂状态关键杆件内力控制为主、线形控制为辅;顶推到位后以预制桥面板抄垫高程和索力控制为重点。建立板梁索相结合的空间模型模拟施工过程,根据计算结果确定施工临时平联布设方案,并实现顶推过程平面中线控制、顶推完成后墩顶3桁高差调整、桥面板高差控制、斜拉索张拉控制,确保各施工阶段的杆件内力、斜拉索索力和主梁线形3项指标均达到设计要求。  相似文献   

13.
南京长江第三大桥钢箱梁桥面吊机及梁段吊装工程   总被引:7,自引:0,他引:7  
南京长江第三大桥钢箱梁吊装采用桥面吊机,吊装的提升、纵横坡及水平位移调整、吊机的移动等操作均通过液压系统完成,操作过程平稳、方便,可自由进行各项微调动作,安装精度高。对南京长江第三大桥桥面吊机的结构、使用和钢箱梁梁段吊装工艺和关键技术作简单介绍。  相似文献   

14.
15.
山区大跨度悬索桥钢桁梁施工技术   总被引:1,自引:0,他引:1  
纪为详  陶路 《桥梁建设》2012,42(3):107-113
为解决山区大跨度悬索桥钢桁梁架设施工受地形条件限制的问题,以坝陵河大桥为背景,研究桥面吊机悬臂架设法施工中不同区域的钢桁梁安装、钢桁梁合龙及钢桁梁提升等施工技术.首、次节梁段采用整体吊装施工,标准梁段及临时铰处梁段采用桁片吊装架设,并在临时铰处设置支撑系统(与钢桁梁铰接);临时铰采用自然合龙,跨中钢桁梁合龙前调整竖向高差及上、下弦合龙口纵向相对偏差(暂不安装合龙口前端永久吊索),合龙时在桥塔处牵引钢桁梁调整纵向偏差;单点提升力大于2400 kN的梁段采用两点提升,其余梁段均采用单点提升.  相似文献   

16.
介绍武汉天兴洲公铁两用长江大桥正桥的质量控制情况。通过建立五大质量监控体系并保持其有效运转,确保设计质量和施工质量,从而实现工程质量的有效控制。  相似文献   

17.
在桥面置换施工过程中,对如何满足施工期间机动车、非机动车和行人的通行问题,如何解决高处拆桥,杂物坠落影响下方铁路正常通行及高空作业的安全防护问题,如何在只有4.5m宽的半幅桥面上进行钢桥面的架设吊装问题,该文在上海松浦大桥桥面置换施工介绍中,提出了明确的解决办法,对其他类似桥梁的施工有一定的借鉴和参考作用。  相似文献   

18.
宁波明州大桥主桥为(100+450+100)m中承式双肢钢箱系杆提篮拱桥,该桥中跨拱肋及加劲梁采用缆索吊方案施工。缆索吊装系统设计承载力达4 000kN,采用缆扣合一结构,主要由塔架及稳定系统、主索系统、起重牵引系统、索鞍、卷扬机系统、锚固系统、电气控制系统等组成。其中,缆塔和扣塔采用2台250t.m塔吊安装;缆风采用往复牵引系统安装,并通过安装分析,实现一次张拉到位;采用主索反置技术,主索采用类似缆风的往复牵引系统牵引过江,应用快速张拉调整装置张拉调节;主索张拉后进行牵引索安装、起重索安装、扁担梁安装、跑车连接、主索及缆风调整等,最后通过调试、试吊完成缆索吊装系统架设。  相似文献   

19.
明州大桥钢桥面铺装层ERS施工技术   总被引:1,自引:0,他引:1  
杨崇国  刘小勇 《桥梁建设》2012,42(2):115-119
为了解决钢桥面板与铺装层间防水、抗滑移、高温稳定等问题,宁波明州大桥主桥钢桥面板铺装层采用树脂沥青组合体系(ERS)桥面铺装技术,桥面铺装结构组成为40 mm高粘改性沥青(SMA-13)+改性沥青防水粘结层+25 mm环氧沥青混凝土(RA05)+环氧粘结碎石层(EBCL).通过对钢桥面板喷砂除锈,达到Sa2.5级;按比例混和EBCL胶料,分2层涂刷,同时洒布碎石;摊铺RA05混合料,并用胶轮压路机碾压,在其固化后洒布防水粘结层;摊铺SMA-13沥青混凝土层,采用钢轮+胶轮+钢轮的组合方式碾压,确保了ERS施工质量,桥面铺装效果良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号