首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为研究极端温度作用下高速铁路简支梁桥与CRTSⅡ型纵连板式无砟轨道相互作用,以5~32 m简支梁为例,建立考虑钢轨、扣件、轨道板、砂浆层、底座板、滑动层、摩擦板、端刺,以及梁体、墩台等构件的桥上CRTSⅡ型无砟轨道系统精细化仿真模型,研究高温和严寒等极端温度条件下系统的受力与变形特征,探讨不同轨道伸缩刚度、滑动层摩擦因数和砂浆黏结力对系统受力与变形的影响.研究结果表明:在高温条件下,轨道板代替钢轨承受了更多伸缩力,轨道板轴向力最大值出现在主端刺处,易导致上拱破坏;正温度梯度作用下,轨道板上、下表面最大纵向应力差达10.1MPa,将引起翘曲变形导致端部砂浆层脱黏;在极寒条件下,轨道板最大纵向拉力出现在右端刺处,最大值达3.9 MPa,轨道板易发生断裂;底座板初始裂缝对轨道板及底座板的受力分布与变形产生不利影响;滑动层可有效减小梁轨之间的相互作用,适当增大砂浆黏结力有利于减小轨道板-底座板离缝和砂浆脱黏等病害的发生几率.  相似文献   

2.
为了准确分析地震作用下高速铁路FPS隔震桥梁无砟轨道的纵向力学特性,以一典型5跨FPS隔震简支梁桥为对象,建立基于CRTSⅡ型板式无砟轨道的线桥一体化模型;应用非线性时程方法分析无砟轨道的纵向力学特性并进行参数研究。研究结果表明:地震作用下,梁端的轨道纵向力要大于梁中间位置;滑动层与剪力齿槽的设计能减小底座板与梁面的纵向相互作用,且道床板纵连能分散从梁面传来的纵向力,使CA砂浆及扣件的纵向力降低;FPS摩擦系数、支座半径、滑动层摩擦系数、剪力齿槽刚度对轨道纵向力有较大影响,在高速铁路FPS隔震设计时,应综合考虑各参数对Ⅱ型板纵向地震受力的影响,在保证正常运营的同时,减小Ⅱ型板纵向地震受力,防止轨道发生纵向破坏。  相似文献   

3.
研究目的:为研究不同类型单元式无砟轨道无缝线路在大跨桥上的适应性,本文建立无缝线路-无砟轨道-桥梁空间耦合分析模型,对温度荷载作用下CRTSⅠ型和CRTSⅢ型板式无砟轨道各层纵向受力与变形、层间错动位移以及限位结构受力进行对比分析,并对运营过程中可能出现的扣件纵向阻力增加对两种无砟轨道在大跨桥上的适应性进行比较。研究结论:(1)两种无砟轨道无缝线路在连续梁端处受力与变形最大,但二者之间的差异较小;(2)扣件纵向阻力的增加将带来连续梁端位置处无缝线路受力增加,变形量减小;(3)CRTSⅢ型板式无砟轨道层间限位刚度大于CRTSⅠ型板式无砟轨道,因此扣件纵向阻力增加导致的CRTSⅠ型板式无砟轨道层间错动位移增加更加明显;(4)梁端限位结构在升降温过程中纵向受剪明显,其中CRTSⅠ型板式无砟轨道梁端半圆形凸台因单侧承力,纵向剪切效应更加显著,且随桥上扣件纵向阻力的增加而急速增加;(5)总体看来,两种无砟轨道的选用对大跨桥上无缝线路设计的影响基本无差异,但在轨道纵向几何形位保持以及大跨梁端限位结构受力方面,CRTSⅢ型板式无砟轨道表现出了较好的适应性;(6)本研究成果可为今后大跨度桥上板式无砟轨道的选型提供理论指导。  相似文献   

4.
桥上纵连板式无砟轨道无缝线路力学性能分析   总被引:1,自引:0,他引:1  
基于有限元法,考虑钢轨、无砟道床、滑动层、桥梁等结构的相互作用关系,建立桥上纵连板式无砟轨道无缝线路纵-横-垂向空间耦合模型,进行滑动层摩擦系数、扣件纵向阻力、无砟道床伸缩刚度等对桥上纵连板式无砟轨道无缝线路的受力和变形影响规律的研究.结果表明:滑动层减弱了桥梁、轨道间的相互作用,当滑动层摩擦系数为0.1~0.5时,无缝线路伸缩力仅为22.821~55.361 kN,远小于一般桥上无缝线路结构;滑动层摩擦系数越小越有利于轨道和桥梁结构的安全使用;底座板/轨道板的伸缩刚度减小会明显增大部分轨道和桥梁的受力,伸缩刚度折减至10%时,伸缩力会增大近6倍,因此应该注意控制底座板和轨道板的开裂现象;扣件的纵向阻力变化对轨道和桥梁结构的受力和变形几乎没有影响,但为了防止钢轨爬行或断缝值超限,扣件阻力不宜太小.  相似文献   

5.
研究目的:温度荷载下梁轨耦合作用规律是桥上铺设CRTSⅡ型板式无砟轨道的基础,本文针对简支梁和连续梁,建立多钢轨、整桥系统的计算模型,对其梁轨耦合作用规律及其影响因素进行较为全面、细致的分析,以期为桥上纵连板式无砟轨道无缝线路的设计、施工及后期养护维修提供参考。研究结论:(1)纵连板的钢轨伸缩力与梁跨布置没有明显的映射关系,近似呈对称分布,这主要是由轨道板的位移分布特点所决定的;(2)底座板是梁轨系统中的关键部件,其伸缩影响着系统其他部件的受力与变形,端刺为底座板的锚固装置,其刚度直接决定着底座板的伸缩位移大小;(3)受梁板相对位移的影响,滑动层、"两布"隔离层、端刺产生的纵向力均会引起底座板纵向力的变化,变化幅度近似为其摩阻力或纵向力;(4)降温工况下,钢轨、轨道板、底座板三层纵连结构受桥梁伸缩的影响不大,但在剪力齿槽处波动较大;(5)滑动层摩擦系数是轨道结构中极其重要而又难以监控的参数;增大CA砂浆粘结力对轨道结构受力有利,建议严控施工质量;(6)该研究结论对纵连板式无砟轨道设计优化理论和工程实践具有一定的指导意义。  相似文献   

6.
基于有限元法,建立多跨简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,研究列车制动荷载作用下钢轨、轨道板及底座板的受力与变形特性,并对相关影响参数进行分析。研究结果表明:在制动荷载作用下,钢轨制动力的峰值出现在两端桥台及中间活动支座上方,钢轨的纵向位移呈现先增后减的趋势,在中间活动支座达到最大值,钢轨和轨道板的纵向伸缩趋势基本一致,表明扣件起到了很好的约束作用;制动力加载方式对轨道结构纵向力及位移有较大影响,在紧急情况下,应尽量避免两列列车同时在桥上同向制动,以免钢轨承受过大的拉力,防止因相对位移过大而导致扣件失效;采用小阻力扣件对桥上CRTSⅠ型板式无砟轨道的受力是有利的,但要充分考虑轨板相对位移不能过大,保证钢轨在桥台处的爬行能够得到有效控制;随着桥墩纵向刚度的增大,轨道结构的受力随之减小,因此,为改善桥上轨道结构的受力条件,在可能的情况下,应尽量采用纵向刚度较大的低墩桥。  相似文献   

7.
以一典型5跨FPS隔震简支梁桥为对象,建立基于两种常用无砟轨道的线桥一体化模型,探讨两种无砟轨道约束对简支梁桥纵向地震反应的影响;并针对CRTSⅡ型板式无砟轨道,研究剪力齿槽刚度、滑动层摩擦系数对简支梁桥纵向地震反应的影响规律。研究结果表明:无砟轨道约束会降低简支梁桥的支座最大纵向位移、支座纵向耗能和最大墩顶纵向位移;与CRTSⅠ型板式无砟轨道相比,CRTSⅡ型板式无砟轨道能降低结构的最大墩顶纵向位移,并对线路起到隔震作用,应优先在FPS减隔震设计中采用,设计时需合理选择剪力齿槽刚度,并考虑滑动层性能变化对结构纵向地震反应的影响。  相似文献   

8.
针对我国高速铁路桥上CRTSⅡ型板式无砟轨道梁-板-轨相互作用问题,采用有限元法分别建立双线多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路精细化空间耦合模型,考虑桥梁及轨道结构的细部尺寸与力学属性,计算列车荷载作用下各轨道及桥梁结构的挠曲力与位移,分析扣件纵向阻力、滑动层摩擦因数等参数对桥上无缝线路挠曲受力与变形的影响规律。研究结果表明:列车荷载作用下大跨连续梁桥上轨道结构的受力与变形要明显大于多跨简支梁桥,单线加载时有载侧和无载侧之间相差不大,且近为双线加载时的1/2;需要根据不同的检算部件选取最不利的列车荷载作用长度;采用小阻力扣件改善钢轨受力与变形时,固定支座桥台和连续梁活动支座桥墩处的轨板相对位移应加强观测;滑动层摩擦因数、固结机构纵向刚度及固定支座墩/台顶纵向刚度均需控制在合理范围内。  相似文献   

9.
为探究列车制动荷载作用下轨道、桥梁结构纵向受力特性及其影响因素,基于有限元法和梁-板-轨相互作用原理,建立多跨简支梁桥上CRTSⅢ型板式无砟轨道无缝线路空间耦合模型,对列车制动荷载作用下结构纵向受力特性、传递规律及其影响因素进行分析。结果表明:以全桥列车制动加载作为计算轨道及桥梁结构制动受力与变形时的最不利工况是偏安全的,并应以有载侧计算数据进行检算;桥上扣件需依据轨道板快速相对位移试算结果进行比选, WJ-8型小阻力扣件可适用于多跨简支梁桥且有较大安全冗余;桥上采用小阻力扣件或墩顶纵向刚度较小时均会使得列车制动荷载作用下的轨道板快速相对位移较大,不利于扣件的长期服役;轨道和桥梁结构制动检算过程中建议将桥跨数简化为10~15跨;需保证土工布隔离层的滑动性能,且应将其摩擦系数应控制在合理范围内。  相似文献   

10.
在弱纵连施工过程中,为了避免轨道板凿除宽窄接缝后在解锁位置发生较大的位移变形,有必要明确不同解锁条件、不同解锁温度下轨道结构的受力变形特征,指导现场施工。基于梁轨相互作用原理和有限元法,建立无砟轨道-多跨简支梁桥精细化模型,利用有限元软件中“生死单元”的功能分步骤解锁轨道板,研究桥上CRTS Ⅱ型板式无砟轨道在不同解锁工况下轨道结构受力变形规律,据此分析得出合理解锁条件及解锁温度,并对应仿真计算中板端植筋工况,在预加固植筋地段进行了现场解锁实验。研究结果表明:不松开钢轨扣件,解锁板温在初始施工锁定板温±5℃范围内,可以直接解锁宽窄接缝;解锁板温在初始锁定板温±5℃之外,轨道板纵向位移不满足规范限值要求,需严格控制解锁温度;松开扣件解锁轨道板,轨道结构整体受力变形增大,轨道板纵向位移超过规范允许限值,建议解锁时不松开钢轨扣件;板端植筋有利于减小解锁后结构的受力变形,但轨道板纵向应力除外,板端植筋可作为解锁时的预防性手段。现场试验表明,解锁时轨道板板端植筋,宽窄接缝位置处轨道板间相对位移几乎不发生变化。研究成果对于CRTS Ⅱ型板式无砟轨道高温胀板病害提出了一种新的解决思路—弱纵连CRTS...  相似文献   

11.
通过在高速铁路正线上开展长期温度荷载下的原位监测和列车制动荷载下的实车试验,以及运用ABAQUS有限元软件的数值计算,进行高速铁路桥上CRTSⅡ型板式无砟轨道倒T型和Π型台后锚固体系的端刺结构在温度力和制动力作用下的受力变形特性研究。结果表明:在降温和升温过程中,端刺结构周围土体压应力较大值主要出现在主端刺摩擦板的下部和桥台方向首个小端刺的位置,端刺结构变形主要以顶部弯拉为主,整体纵向变形较小;在紧急制动荷载的作用下,钢轨纵向应力、端刺纵向位移均随着轴重的增加而明显增大,但端刺纵向位移绝对值较小,与温度荷载作用相比,紧急制动荷载作用对端刺结构的影响小。  相似文献   

12.
CRTSⅠ型板式无砟轨道的CA砂浆产生伤损后,容易形成轨道板板底脱空,造成轨道刚度局部突变,不利于轨道结构受力和行车安全。通过对框架型板式轨道砂浆层伤损进行现场试验,评估砂浆伤损对轨道系统动力特性的影响。基于轮轨系统动力学原理,建立车辆-框架型板式轨道垂向耦合振动模型,研究分析不同形式、尺寸的砂浆伤损对轮轨系统动力特性的影响。现场试验和理论研究表明:宽度小于0.2m的砂浆伤损对行车的影响有限,列车轴重对砂浆伤损的影响明显;轨道板端砂浆伤损形式对轮轨系统振动的影响较大,当砂浆伤损沿纵向宽度超过0.6m时,车辆和轨道系统各部件动力响应明显增大;从动力学的角度出发,砂浆伤损沿轨道纵向宽度不宜超过0.6m,沿轨道横向宽度不宜超过0.2m。  相似文献   

13.
研究目的:框架板式无砟轨道是一种新型轨道结构,广珠城际轨道交通采用框架板式无砟轨道,但目前国内尚未建立系统的设计方法。通过本文研究,建立框架板式无砟轨道计算模型和结构计算方法,掌握框架板式无砟轨道受力和变形的基本规律,为框架板式无砟轨道设计提供理论依据。 研究结论:框架板式无砟轨道具有良好的技术经济性,采用框架型板式轨道对于降低轨道板翘曲的影响是有利的。本文建立的无砟轨道计算模型和结构分析方法能够考虑列车荷载、温度荷载、路基不均匀沉降和桥梁挠曲等因素,可以系统地进行框架板式无砟轨道结构分析,进而掌握框架板式无砟轨道受力和变形的基本规律。通过设计参数(CA砂浆弹性模量、扣件刚度、基础不均匀沉降)对框架板式无砟轨道受力和变形的影响分析,可见轨道板和底座的受力和变形随着CA砂浆弹性模量的增加而减少,随着扣件刚度的增大而增大,随着不均匀沉降量的增大而增大。  相似文献   

14.
CA砂浆层掉块破坏是无砟轨道结构运营过程中最突出的病害之一,其破坏程度对无砟轨道结构运营的安全性与适用性具有重要影响。通过采用修正Burgers模型转换Prony级数表征CA砂浆的黏弹性,建立CRTSⅠ型板式无砟轨道结构三维有限元模型,通过模拟CA砂浆层在板端和板中不同区域薄层掉块,研究车轮荷载作用下不同掉块位置、不同掉块大小对无砟轨道结构动力特性和结构位移的影响,分析掉块处轨道结构损伤演变规律和趋势,给出破坏界限建议值,为无砟轨道结构的养护维修提供理论依据和指导。研究结果表明:无论板端还是板中掉块,CA砂浆层破坏造成轨道板垂向加速度、垂向位移和纵向拉应力增幅明显,CA砂浆层掉块边缘位置的压应力急剧增大,而底座板垂向位移及受力逐渐减小;车轮荷载作用下,CA砂浆层板端薄层掉块达到0.912 5 m,板中掉块达到1.25 m时,轨道板的垂向振动和CA砂浆的压应力将会显著增大,应及时对轨道结构进行检修,避免轨道结构破坏快速扩展。  相似文献   

15.
研究目的:桥上CRTSⅡ型板式无砟轨道无缝线路梁-板-轨及层间相互作用机理比较复杂,为研究各轨道及桥梁结构的制动力传递规律及其影响因素,基于有限元法和梁-板-轨相互作用原理,建立多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路空间耦合模型,计算列车制动荷载作用下各轨道及桥梁结构的纵向力与位移,并分析多种因素对制动力传递规律的影响。研究结论:(1)制动荷载作用下的轨道结构纵向力由拉力逐渐变为压力,纵向位移呈现先增后减的趋势;(2)需根据不同的检算部件选取最不利的荷载工况;(3)在检算时需考虑轨道板/底座板刚度的折减,且必须保证其施工质量;(4)采用小阻力扣件时轨板快速相对位移的剧增易带动轨下胶垫滑出;(5)固结机构、桥墩/台采用较大纵向刚度,并保持滑动层的良好滑动性能有利于各轨道及桥梁结构的受力与变形;(6)该研究成果可为桥上CRTSⅡ型板式无砟轨道无缝线路的设计、施工及运营维护提供参考。  相似文献   

16.
研究目的:桥上无缝线路受力比较复杂,桥梁、轨道结构的受力变形成为广泛关注的问题。为研究列车荷载作用下桥上轨道结构的受力变形规律及影响因素,根据多跨简支梁桥上单元板式无砟轨道无缝线路的结构特点,基于有限元法建立多跨简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,计算列车荷载作用下桥上轨道结构的挠曲力与位移,并分析扣件纵向阻力、墩台顶固定支座纵向水平线刚度以及桥梁跨数等因素对挠曲受力与变形的影响规律。研究结论:(1)在列车荷载作用下,钢轨挠曲拉力及压力最大值分别出现在左侧桥台固定端与最后一跨跨中位置,钢轨位移呈先增后减的趋势,并在两侧路基段逐渐减小至零;(2)采用小阻力扣件可明显降低钢轨及轨道结构的受力,但同时会增加轨板相对位移,需要重点关注钢轨在桥台处的爬行;(3)采用较大纵向水平线刚度的低墩桥对列车荷载作用下桥上轨道结构纵向位移而言是不利的;(4)随着桥梁跨数的增加,轨道结构的纵向力与位移也不断增大,在6跨之前增幅明显,6跨之后增幅明显放缓并逐渐趋于平稳;(5)本研究成果对桥上CRTSⅠ型板式无砟轨道的设计及结构安全性具有参考价值。  相似文献   

17.
为探明高速铁路长联大跨度连续梁桥上CRTSII型板式无砟轨道制挠工况下受力特性,选取某高铁跨径(60+3×100+60)m的连续梁桥为工程实例,建立考虑梁轨各构件的空间有限元模型,计算分析单侧制挠工况下各层轨道结构纵向附加力分布规律;分析轨道关键结构参数变化对其纵向附加力影响规律,研究结果表明:在单侧制挠工况下,钢轨纵向附加力最大值出现位置随着加载区域的变化而变化,最大附加拉力及附加压力分别出现在加载区域后端点、前端点;轨道板和底座板纵向附加力分布趋势一致;3层轨道结构中,轨道板在制挠工况下纵向附加力最大;连续梁固定支座右侧300 m范围加载制动力为轨道结构相对最不利工况;道床板伸缩刚度以及滑动层摩擦因数对轨道结构附加力影响较大;CA砂浆层对轨道结构附加力影响较小;建议增大大跨连续梁两端无砟轨道结构强度,改进CRTSII无砟轨道CA砂浆层的设置。  相似文献   

18.
利用有限元软件ANSYS建立温度荷载作用下桥上CRTS II型板式无砟轨道结构体系各部件纵向相互作用分析模型。模型中钢轨、轨道板、底座板、梁体、桥墩均采用梁单元模拟,各结构层之间的连接采用弹簧单元模拟。以一座高速铁路混凝土连续梁桥为例,分析桥梁温度荷载作用下,轨道及桥梁结构的力学特性,并针对相关因素对各结构层受力与变形的影响进行了研究。研究结果表明:当梁体温升幅度达到一定值以后,轨道结构纵向力不再明显增大;"分离板模型"能更好反映CA砂浆黏结状态对轨道和桥梁受力特性的影响;滑动层摩擦大数增大,将大幅度增加轨道与桥梁结构的受力;轨道板宽接缝开裂导致钢轨、底座板纵向受力以及轨道板位移的增大。  相似文献   

19.
CA砂浆脱空对框架型轨道板翘曲的影响分析   总被引:2,自引:2,他引:0  
CA砂浆填充层作为框架型板式轨道关键结构层,长期暴露于自然环境中,受列车荷载冲击、温度循环以及水的侵害等作用,砂浆层与轨道板间易产生脱空,劣化轨道结构受力状态。基于无砟轨道弹性地基梁体模型,分析了正常状态和砂浆层与轨道板间出现脱空时框架型板式轨道在温度梯度荷载作用下的受力情况,并针对板端横向全部脱空和板边纵向全部脱空两种常见脱空形式进行分析。结果表明,较低的砂浆弹性模量可减小轨道板翘曲和缓解列车荷载冲击作用;对于脱空状态,在正温度梯度作用下,轨道板受力和板角翘曲变形受脱空程度影响较大,而对砂浆层受力影响较小;在负温度梯度作用下,轨道板和砂浆层受力状态受脱空程度影响均不明显。  相似文献   

20.
高速铁路无砟轨道监测技术   总被引:5,自引:5,他引:0  
总结我国高速铁路无砟轨道结构形式,分析运营过程中可能存在无砟轨道上拱、梁端凸台或底座开裂、扣件失效、砂浆层离缝、轨道结构开裂、线下基础沉降等问题,提出采用电阻应变片式、振弦式、光纤光栅、电涡流非接触式、无线传输、远程监控、预警机制等测试和监控方法以及道岔区板式无砟轨道综合监测、桥上42号道岔区及临时端刺区受力和变形监测、隧道内CRTS I型减振型板式无砟轨道减振测试、CRTSⅡ型板式无砟轨道温度及变形监测等应用实例。并探讨采用高清摄像头图像识别、利用红外热成像、利用光纤的振动和声学传感等新技术在无砟轨道安全监控中应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号