首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
研究目的:目前轨道板与CA砂浆层离缝损伤是我国CRTSⅡ型板式无砟轨道主要损伤形式,本文为研究砂浆层离缝损伤机理,制作混凝土和砂浆复合试件进行劈拉和剪切模型试验,采用数字图像相关(DIC)技术得到加载过程的层间应变场分布,分析得到内聚力模型参数,并采用有限元软件计算内聚力模型参数且与试验结果进行对比验证,得到轨道板与砂浆层间力学特性及其破坏模式。研究结论:(1)DIC技术能较好地描述复合试件的层间应变场分布,以及层间损伤、裂纹萌生、扩展及破坏的全过程;(2)轨道板与砂浆层间粘结破坏属脆性破坏,层间法向和切向张力-位移关系均表现为双线性关系;(3)轨道板与砂浆层间参数可取法向内聚强度1.792 MPa、界面刚度708.485 MPa/mm、临界断裂能0.025 2 mJ/mm~2,切向内聚强度0.956 MPa、界面刚度63.039 MPa/mm、临界断裂能0.018 mJ/mm~2;(4)本研究成果可用于分析轨道板与砂浆层间损伤开裂行为,可为Ⅱ型板式轨道结构的设计及维修提供理论依据。  相似文献   

2.
分析了框架板式无砟轨道板角离缝原因,建立了含维修材料的框架板式无砟轨道有限元模型,研究了维修材料弹性模量对无砟轨道受力和变形的影响规律,提出了板角离缝维修材料建议。研究结果表明,施工因素、服役环境和长期列车荷载作用是导致单元框架板式无砟轨道发生板角离缝的主要原因;钢轨和轨道板的垂向位移、CA砂浆层压应力随板角离缝面积的增大而增大,轨道板的拉应力则先增大后减小;正温度梯度作用下轨道板的拉应力随维修材料弹性模量的增大而增大,轨道结构位移则随维修材料弹性模量的增大而减小;当维修材料弹性模量从50 MPa增加至1 000 MPa时,列车荷载作用下维修材料的压应力增大了3.25倍;从维修材料受力角度考虑,建议框架板式无砟轨道板角离缝维修材料采用树脂材料,且弹性模量宜为100~300 MPa。  相似文献   

3.
轨道板与水泥乳化沥青砂浆离缝是CRTSⅡ型板式无砟轨道的主要伤损形式之一,水泥乳化沥青砂浆具有支承、缓冲、传载等作用,离缝将影响无砟轨道的变形与受力。基于弹性地基梁体理论和有限元方法,建立了路基上CRTSⅡ型板式无砟轨道有限元模型,分析在温度荷载和自重作用下不同离缝长度以及产生离缝后CA砂浆层参数对轨道结构的影响。结果表明:轨道板的翘曲位移及纵向应力均随着离缝长度增大而增加;当离缝长度超过1.95 m时,轨道板的翘曲变形及纵向应力都急剧增大,建议轨道板与CA砂浆层离缝长度不宜超过1.95 m。  相似文献   

4.
针对目前在桥梁地段CRTSⅠ型板式无砟轨道凸台周围树脂离缝,建立CRTSⅠ型板式轨道力学模型,采用可压缩超弹单元模拟树脂层,分析不同扣件阻力、轨道板与CA砂浆间的摩擦阻力条件下的填充树脂层受力。结果表明:在纵向荷载作用下,一旦树脂层发生塑性变形,随着荷载消失和温度下降,树脂层将无法完全回弹,因而产生离缝,并在梁端转角和列车振动荷载作用下进一步发展;在扣件纵向阻力较大时,树脂层会从轨道板下表面与树脂层相接触的位置剪切破坏;轨道板与CA砂浆层之间的摩擦阻力对树脂层的压缩位移和剪切应力的影响不大。  相似文献   

5.
CRTSⅡ型板式无砟轨道结构层间早期离缝研究   总被引:4,自引:0,他引:4  
在不同气候条件下现场观测CA砂浆灌注施工时的轨道板温度,得到实测的轨道板温度梯度。建立轨道结构力学计算模型,计算轨道板在实测温度梯度作用下的温度翘曲变形及应力。研究表明:气温和太阳辐射是影响轨道板温度梯度的主要因素;板面温度对温度梯度起控制作用;CA砂浆水化热对温度梯度有一定影响;在1d中,轨道板正、负温度梯度的交替变化引起温度翘曲压、拉应力的交替变化,是产生轨道结构层间早期离缝的最主要原因。因此,在早期温度场控制中,可采用有效的隔热或保温措施控制轨道板板面温度,避免出现较大的轨道板温度梯度,导致产生较大的温度翘曲应力,并根据CA砂浆强度增长规律,尽量延长扣压装置和精调千斤顶的拆除时间,从而有效地减少轨道结构层间早期离缝。  相似文献   

6.
板式无砟轨道结构层间界面为力学薄弱面,在温度和外荷载作用下,容易发生离缝。建立CRTSⅡ型板式无砟轨道多层薄板体系全过程三维渐进损伤力学模型,分析服役前界面损伤发生、发展过程和离缝机理,以及服役后考虑历史损伤和损伤累积效应下离缝的动态演化机制。结果表明:"单元→纵连(未服役)→服役"全过程中,轨道结构在正、负温度梯度,以及整体温升和列车"拍打"作用下,层间界面不同区域发生主拉伸型、混合型和主剪切型损伤。损伤累积导致层间离缝,离缝主要从主剪切型损伤区域开始,损伤和离缝发展存在继承性。单元状态下,温度梯度较小时界面即出现一定程度损伤,且损伤随温度梯度值的逐渐增大而不断发展,但实测温度梯度多在-40~90℃/m"安全温度梯度"范围内,此时离缝发生的可能性很小。纵连(未服役)状态下,"整体温升+正温度梯度"为最不利荷载组合。在整体温升条件下,层间界面离缝产生对应的正温度梯度值显著降低。服役状态下,受列车循环冲击荷载作用,若承轨台下存在既有离缝,轨道板将"拍打"CA砂浆层,离缝发展成"花生壳状"。随着冲击次数的不断增加,离缝继续发展。  相似文献   

7.
CRTSⅡ型板式无砟轨道用CA砂浆的温度疲劳研究   总被引:1,自引:0,他引:1  
CRTSⅡ型板式无砟轨道充填层CA砂浆与轨道板接触面之间常见脱粘、离缝情况。为探讨CA砂浆在温度疲劳作用下与轨道板脱粘、离缝规律,采用-20℃到60℃的温度循环对试件进行疲劳试验,并对疲劳后的试件进行微观结构分析和热分析。结果表明:由于沥青基体在温度疲劳作用下的迁移、老化、黏性降低,CRTSⅡ型CA砂浆和轨道板混凝土经过16次循环后即出现脱粘,产生裂缝。  相似文献   

8.
地铁减振型无砟轨道结构中,CA砂浆层位于轨道板和隔振垫之间,起着支承、传载和调整的功能。由于隔振垫的存在,CA砂浆层极易发生破坏,因此需要全面地研究轨道结构参数对CA砂浆的应力影响规律。基于弹性地基梁体模型,研究轨道板的混凝土等级、CA砂浆弹性模量、隔振垫刚度及轨道板长度4个轨道结构参数对CA砂浆应力的影响规律,并通过应力匹配图得到合理的轨道结构参数匹配。得到的结论是CA砂浆弹性模量是对CA砂浆应力影响最敏感的参数;轨道板的混凝土等级、CA砂浆弹性模量、隔振垫刚度及轨道板长度4个轨道结构参数对CA砂浆最大拉应力的影响远大于对CA砂浆最大压应力的影响;通过应力匹配图,提出较为合理的轨道结构参数匹配:轨道板使用C80等级的混凝土、CA砂浆取中低弹模3 000 MPa、隔振垫刚度取0.04 N/mm~3、轨道板长度取4.097 m。  相似文献   

9.
我国高速铁路无砟轨道无缝线路发展迅速,但随着列车的运营,轨道板与CA砂浆层之间常会出现离缝,这将对无砟轨道的长期服役性能产生一定的影响。以高速铁路多跨简支梁上CRTS Ⅰ型板为例进行分析,研究板边、板端、板角、板中4种典型CA砂浆离缝病害对轨道几何形位及对无缝线路受力变形情况的影响。研究结果表明:离缝病害作用下,随着桥轨间温差变大,轨道水平偏差增幅较大,轨道高低偏差最值偏大,并且板端病害对离缝区平顺性影响大。在温度荷载作用下含病害的轨道结构伸缩受力更加明显,尤其体现轨道板、底座板上,其中板边位置的病害受力变形最为明显。在列车荷载作用下在离缝病害区域轨道结构挠曲受力情况变化较大,其中板角及板端病害影响大。根据计算结果建议在无缝线路养护维修时着重检查轨道板及底座板下表面的情况,及要注意检修钢轨正下方病害情况。  相似文献   

10.
CRTSⅡ型板式无砟轨道在运营初期高温季节中出现区域性板下离缝现象,影响高速列车正常运营和轨道结构耐久性。本文建立考虑轨道板和CA砂浆间离缝的精细化车辆-轨道空间耦合动力学分析模型,分析离缝状态下车辆、轨道的动力学响应,研究不同离缝量、离缝范围及车辆行车速度的影响。结果表明:离缝量增加导致车辆、轨道动态响应加剧,离缝量在6~8mm以上时加剧效应明显;离缝范围在2块板下导致的轮轨垂向力及钢轨、砂浆层纵向应力更明显,轨道板纵向应力也较大,因此在养护维修时应重点关注离缝范围在2块板下的情况;离缝区域临时限速是保证列车运营安全、降低轨道结构应力的有效手段,本文提出的限速建议值可为离缝区域限速运营提供参考。  相似文献   

11.
研究目的:分析高速铁路CRTSⅠ型板式无砟轨道CA砂浆离缝产生的原因,研究修补材料在CRTSⅠ型无砟轨道CA砂浆离缝的处理时的适应性,提出离缝修补填充材料的基本技术要求,并从施工性、填充适应性和耐久性等方面对环氧树脂与高性能改性树脂材料进行对比研究。通过对比试验研究,最终优选出更具施工性、填充适应性和耐久性的CA砂浆离缝修补填充材料。研究结论:(1)通过施工性与填充适应性的比较分析显示,RX-SI适用于实际CRTSⅠ型CA砂浆离缝施工处理,施工工艺简单可行;(2)通过耐久性研究结果显示,RX-SI的弹性模量和CA砂浆的弹性模量完全匹配,RX-SI可确保维修处理的无砟轨道板整体结构安全耐久性;(3)该研究成果专门针对CRTSⅠ型无砟轨道CA砂浆离缝,可以在CRTSⅠ型无砟轨道CA砂浆离缝的修补上推广运用。  相似文献   

12.
为了研究轨道板板角离缝的形成原因及治理措施,选取一高速铁路CRTSⅠ型板式无砟轨道结构,对其砂浆变形、板面高程、轨道板不同部位温度等指标进行24 h连续测试,并对测试结果进行分析。结果表明:轨道板板面与板底温差的周期性变化是导致轨道板周期性变形的主要原因;轨道板板面高程随时间变化呈现大致规律的波动变化;相对板面中心,板角在夜间翘起明显,板角离缝宽度与离缝值在夜间同步增大;充填层CA砂浆横向和竖向变形遵循热胀冷缩规律,其变形量较小,不是板角离缝产生的主因;不同涂层对混凝土表面温度具有降低作用,可用于改善板角因温度翘曲而产生的离缝程度。  相似文献   

13.
水泥乳化沥青砂浆层离缝是CRTSⅡ型板式无砟轨道的主要病害。本文采用双线性黏结滑移模型表征轨道板与砂浆层的黏结关系,对推板时的层间传力规律进行理论分析;利用有限元方法,根据推板试验结果对层间参数进行拟合,研究推板时层间传力规律;基于黏结滑移模型,建立CRTSⅡ型板式无砟轨道三维有限元模型,分析极限温度梯度荷载作用下层间破坏规律。结果表明:温度梯度荷载作用下,层间的伤损主要产生在板边,与现场观察的离缝一致;层间黏结强度的增加能够减小层间伤损值及伤损区域,黏结强度小于0.025 MPa时在正温度梯度荷载作用下轨道板容易出现上拱现象;该层间模型中的弹性段长度δ_1值对层间传力规律影响较大,δ_1值的增加能够有效减小层间伤损值及伤损区域。  相似文献   

14.
针对CRTSⅠ型板式无砟轨道先导段施工,系统总结底座与凸台施工、轨道板铺设、砂浆灌注和凸台树脂施工4个方面的控制要点。结果表明,通过换手复测、控制放样精度、模板定位准确牢固且拼装不漏浆等关键环节,可提高底座凸台混凝土施工精度;通过橡胶垫片/圈保护、方木条引导、精调爪同步受力等措施,可提高轨道板铺设时成品质量;用百分表监控轨道板上浮量确定CA砂浆灌注终点、在进浆口处增加压板装置等措施,可有效减少CA砂浆施工对精调轨道板状态的扰动影响;通过调节外加用水量,控制CA砂浆流动度在上限附近,可减少轨道板四角离缝和曲线段高侧离缝。  相似文献   

15.
为研究循环温度荷载下无砟轨道结构层间离缝产生与扩展规律,以及离缝对轨道结构受力性能的影响,制作了三跨无砟轨道-简支梁桥结构1/4缩尺模型,开展了18次循环温度荷载试验。并在循环温度试验前后分别对结构进行了2次静力加载试验,对比分析结构体系受力特性发生的变化。试验结果表明:循环温度荷载作用下,梁端处轨道板与CA砂浆之间产生离缝,并向跨中呈“阶梯状”逐渐延伸,历经萌生、扩展和稳定三个阶段。随离缝长度增加,相同温度荷载下,梁体上拱度逐渐减小,而轨道结构上拱度逐渐增大,在离缝的萌生、扩展和稳定三个阶段,轨道结构的刚度呈现慢-快-慢的速度逐渐减小。经18次循环温度荷载作用后,轨道结构的刚度降低了14. 96%,无砟轨道-桥梁结构体系整体刚度降低了2. 52%。  相似文献   

16.
宁安城际铁路全长257 km,设计速度为200 km/h 以上,全线采用 CRTSⅠ型板式无砟轨道。CA砂浆层的灌注质量能决定轨道板的承载性能和使用寿命。本文介绍了CA 砂浆垫层模袋灌浆的施工工艺,并就施工质量关键控制技术进行了探讨。  相似文献   

17.
介绍桥上纵连板式无砟轨道特点,观测和分析高速铁路桥上轨道板温度梯度及温度翘曲变形,对轨道板离缝进行统计,并对其机理进行分析,提出轨道板CA砂浆离缝整治可根据离缝宽窄及所处区段,采用接缝凿除释放应力、钻孔下压锚固与注浆相结合方案.  相似文献   

18.
在夏季高温作用下,支承层斜裂贯通缝可能导致结构上拱变形,衍生次生病害。基于内聚力和塑性损伤理论建立CRTSⅡ型板式无砟轨道结构有限元模型并与现场实测结果对比验证模型的有效性,分析夏季高温作用下支承层斜裂缝导致的结构上拱变形、离缝、受力和伤损规律。结果表明,温度荷载作用下,斜裂缝一旦贯通,轨道结构变形急剧增大。随温度升高,支承层相互错动,CA砂浆层与支承层先离缝,随后轨道板与CA砂浆层离缝,轨道结构上拱变形。结构性能随温度演化过程可分为0~20℃的缓慢发展阶段、20~30℃的加速发展阶段和大于30℃的飞速破坏阶段。贯通斜裂缝位于板中,角度30°时,轨道结构变形达到最大值26 mm。建议温度大于30℃时,检修重点关注角度不大于45°的板中斜裂贯通缝。  相似文献   

19.
为研究轨道板与砂浆层层间离缝产生的原因,推导了轨道板在砂浆层或砂浆层和张拉钢筋约束下的解析解,分析了层间离缝产生时轨道板的临界伸缩温度TL.结果表明:轨道板伸缩刚度极大,砂浆层较难约束轨道板的伸缩变形,离缝产生时的TL主要与砂浆层对轨道板约束达到最大时的临界位移有关;虽然中国现场测试所得的轨道板与砂浆层层间摩阻力系数k...  相似文献   

20.
运营过程中发现CRTSⅡ型轨道板边角位置与砂浆层之间存在离缝,而现有研究除考虑宽窄接缝破损外,均未涉及宽窄接缝处上拱变形的情况。本文根据推板试验结果对砂浆层与轨道板的水平连接施加不同的约束方式,分析轨道板上拱的成因及其对钢轨变形的影响。研究结果表明:轨道板上拱主要由CA砂浆层的水平约束刚度不均匀引起;当轨道板各层温度均高于施工锁定温度处于升温状态时,轨道板的最大上拱变形纵向上出现在宽窄接缝处,横向上出现在板中;轨道板变形随着离缝区域的增大逐渐趋于平稳;变形传递系数在正温度作用下为0.63,在负温度作用下为0.31。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号