首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孤石是风化岩残留体硬度高强度大,地层存在孤石是阻碍盾构施工的危害之一。依托厦门城轨交通4号线彭厝北站~蔡厝站区间,针对滨海孤石地层盾构掘进的稳定性进行离散元数值分析,分别研究孤石与隧道距离、隧道埋深、孤石位置及盾尾空隙对地层稳定性的影响。研究结果表明:随着孤石与隧道距离增大,地层扰动范围、拱顶衬砌压力变化及地表沉降都有减小的趋势;随着隧道埋深的增大,地层扰动范围及地表沉降都呈减小趋势,衬砌土压力整体上呈现增大趋势;随着孤石位置逐步远离隧道顶部,地层扰动范围及地表沉降都呈减小趋势,孤石位于拱肩、拱脚、仰拱底时衬砌压力产生突变;随着盾尾空隙增大地层扰动程度及地表沉降也增大,衬砌拱顶土压力呈增大趋势。  相似文献   

2.
当隧道埋深达到超浅埋隧道标准时,围岩应力状态和支护结构内力状态会变得极其复杂,严重降低隧道施工安全性,因此,有必要针对超浅埋隧道施工过程中的各项变形特征开展研究。以胡营西山隧道为工程背景,对净空收敛、拱顶沉降、地表沉降、钢拱架应变及二次衬砌应变进行全程监测及实测数据分析。主要结论如下:1)超浅埋隧道地表沉降均呈沉降槽分布,最大值在隧道顶部;2)周边收敛和拱顶下沉均随时间递增,且前期增速较大,后期趋于平稳;3)钢拱架初期应变值增长较快,每一台阶开挖都会对应变造成一定的影响,使应变发生重分布;4)因为混凝土凝结过程放热,二次衬砌的初期应变值都由拉应变转变为压应变,前期拉应变快速增长。  相似文献   

3.
以乌鲁木齐地铁隧道穿越九家湾活动正断层工程为例,建立穿越活动正断层隧道结构的三维弹塑性有限元模型,模拟分析在正断层错动作用下隧道二次衬砌应力、塑性区分布规律及裂缝分布特征;通过大比例尺跨活动正断层隧道剪切错动室内模型试验,明确隧道结构在断层剪切错动下的破坏范围及破坏形态。结果表明:数值模拟结果与模型试验结果的规律一致性较好;断层面处隧道衬砌承受压—剪—扭的组合作用,衬砌破坏最严重;二次衬砌开裂主要以纵向裂缝为主,集中在仰拱内侧、墙脚外侧及拱顶内侧;剪裂缝集中在断层迹线处的隧道拱脚,环向裂缝多出现在拱腰位置;上盘二次衬砌开裂范围均大于下盘;设防时应加强环向主筋及箍筋,使隧道整体结构形成环—纵向骨架,从而减少纵向和斜向开裂,并防止纵向裂缝的贯穿。  相似文献   

4.
通过现场监测和数值模拟,研究了中兰客运专线盘岘山大断面黄土隧道二次衬砌的受力特征。结果表明:接触压力、钢筋轴力、混凝土应力随时间变化大致可分为施工扰动阶段、变化阶段和稳定阶段,仰拱受力波动幅度较拱墙大,达到稳定的时间更长;接触压力沿洞周不均匀分布,边墙以上呈双耳状分布,仰拱处呈哑铃形分布,且仰拱整体接触压力大于边墙以上部分;理论与实测荷载作用下二次衬砌内力与分布规律差异显著。安全系数最小值在理论荷载作用下位于拱顶和左右拱肩,在实测荷载作用下位于仰拱与边墙交界处。实测结果表明基于松动压力的理论荷载不能表征砂质黄土地层二次衬砌结构的实际受力特征。  相似文献   

5.
隧道衬砌缺陷致害研究是当前热点,对衬砌病害产生原因进行探析对隧道施工及设计来说尤为重要。通过结合相关资料、建立FLAC2D二维模型对某隧道出现的拱腰拉裂、拱顶压溃病害原因进行初探,研究结果表明:(1)拱顶背后存在空洞是引起隧道衬砌拱腰拉裂、拱顶压溃病害的主要原因。(2)拱顶背后存在空洞将引起衬砌受力发生显著变化,具体表现为拱部由衬砌背后无脱空工况下的洞内侧受拉转变成洞外侧受拉,且拱顶衬砌内表面处出现压应力集中。  相似文献   

6.
为探究水平旋喷桩在不同跨度铁路隧道下承载特性,依托南三龙铁路与赣龙复线联络线道岔进新考塘隧道影响段存在的7种不同隧道跨度断面,采用二维有限元方法,模拟7种不同跨度下水平旋喷桩预支护效果,分析水平旋喷桩结构变形、应力及塑性应变规律。计算结果表明:不同跨度下,旋喷桩变形和常规隧道衬砌变形类似,即拱顶沉降,拱肩、腰、脚等处体现不同程度收敛,各点变形随跨度增大而增长,当跨度大于16 m时,增长速率加快,拱肩及拱腰位置尤其明显;旋喷桩内力部分,当跨度较小时,拱顶内侧受拉,而拱腰处受压,当宽度增大,拱部拉应力区向拱腰处扩展,且拉应力极值增大,而拱腰与拱脚之间压应力迅速增大;随着隧道跨度不断增大,水平旋喷桩等效塑性应变不断增大,影响范围自拱顶到拱脚呈扩大趋势。  相似文献   

7.
达成高速铁路岩溶隧道围岩稳定性分析   总被引:1,自引:0,他引:1  
结合达(州)成(都)高速铁路某岩溶隧道工程,建立岩溶隧道三维实体模型,利用三维快速拉格朗日法FLAC3D对隧道底部含有溶洞的围岩稳定性进行数值模拟研究,并将数值计算结果与现场监测结果进行比较分析.研究结果表明随着隧道施工接近并通过溶洞顶部,隧道拱顶处围岩向下变形,其值不断增大,拱腰处围岩沿隧道径向收敛,其值变化较小;仰拱处围岩最初向上变形,在隧道施工到溶洞顶部时变为向下变形,且其下沉值不断增大;围岩塑性区主要集中在隧道拱顶、仰拱底、拱腰和溶洞顶部处,溶洞顶部与隧道底部的塑性区有相互连通的趋势;隧道拱顶左右各约45°的范围、隧道底部以及溶洞周围的部位为应力释放区,拱腰处为应力增高区.  相似文献   

8.
为了探索隧道拱顶二次衬砌背后不同范围内存在空洞条件下高速列车气动荷载对隧道二次衬砌结构的影响,采用隧道空气动力学的流体力学分析方法及结构力学分析方法,对二次衬砌结构的受力进行研究。研究结果表明:在气动荷载作用下,隧道二次衬砌结构处于"拉—压"的循环受力状态中;在隧道拱顶二次衬砌背后存在空洞时,衬砌结构上产生的瞬态应力变化规律与其受到的气动荷载变化规律一致,当列车运行速度为350km·h-1时,二次衬砌结构上产生的最大瞬态应力是同一时刻气动荷载的约39倍;在最大正峰值气动荷载作用下,随着拱顶二次衬砌背后空洞范围的增大,拉应力范围逐渐变小,拉应力值先增大后减小;在最大负峰值气动荷载作用下,隧道拱顶二次衬砌第一主应力仅有压应力而无拉应力作用,而且随着拱顶二次衬砌背后空洞范围的增大,二次衬砌受压区的范围逐渐变小,压应力值先增大后减小;二次衬砌结构上产生的最大应力绝对值随着列车运行速度的提高而增大,且与列车运行速度的平方成二次函数关系。  相似文献   

9.
为研究小净距三孔隧道施工性态,建立考虑地层-隧道互作用的三维有限元模型,分析了施工顺序及施工工法对地表沉降、拱顶及拱腰应力、衬砌应力的影响。结果表明:同一隧道开挖引起地表沉降量正上方大于侧上方,不同跨度隧道开挖引起的地表沉降量大跨度大于小跨度;先中隧后边隧施工地表沉降槽形状为"V"形,先边隧后中隧施工地表沉降槽形状由"W"形逐渐转变为"V"形;中隧道拱顶处竖向应力在掌子面到达前增大,到达后减小,拱腰处水平应力,掌子面到达前减小,到达后增加;衬砌等效应力最大值出现在中隧道第一步衬砌顶部,随开挖步的增加先快速增大,然后缓慢增大,最后趋于稳定。所得结论可为类似工程的设计与施工提供参考。  相似文献   

10.
运用相似理论分析模型材料的选择原则,设计了能进行围岩压力、位移、衬砌变位及竖向加压测试的平面应变模型试验装置。通过1∶20比例尺寸的模型试验对地形偏压作用下连拱隧道衬砌受力和拱顶沉降的分析,表明在不同荷载下左右洞室衬砌都受压力,随着隧道上覆荷载的增大而增大,左洞最大轴力值分布于仰拱和边墙的结合部位,右洞最大轴力值分布于靠近中墙的左拱腰;试验过程中,左右洞室有被压扁的趋势,连拱隧道整体向浅埋侧移位,浅埋侧和深埋侧围岩出现被动压力和主动压力作用。  相似文献   

11.
为控制隧道穿越强富水裂隙岩体围岩稳定性,以天河山隧道为例,采用三维相似模拟试验研究了衬砌水压力特征,得出相较于传统的无环向盲管而言,有环向盲管的配置使得衬砌背后水压力轻微减小;在衬砌结构的关键交接点上的衬砌背后水压力的数值相对于非交叉位置衬砌背后水压力值较小;围岩底部排水系统和衬砌环向与纵向盲管排水系统之间相互配合,此种设置能够降低高水压富水裂隙岩体隧道衬砌背后的水压力。同时提出了“反压土石回填+型钢支撑+小导管注浆+超前管棚注浆”控制措施。现场监测结果表明:隧道钢拱架最大受力位置为拱顶,受拉值为45.3 MPa,最大围岩压力出现在左侧拱墙,为0.129 5 MPa,且二者在仰拱施作完成后围岩压力趋于稳定,说明整体结构处于安全状态。  相似文献   

12.
红黏土隧道围岩含水率变化及变形特征分析   总被引:1,自引:0,他引:1  
银西高速铁路庆阳隧道洞身主要围岩为红黏土。本文通过现场监测,对庆阳隧道从初期支护开始近2个月内围岩含水率、钢拱架应力及围岩变形的变化规律进行分析。结果表明:红黏土隧道围岩含水率、钢拱架应力和围岩变形先增大而后趋于稳定;含水率和钢拱架应力的增长波动期一般为2~4周,围岩变形增长期一般为2周;含水率趋于稳定后拱顶和拱腰处围岩含水率明显小于拱脚和仰拱处;增长期围岩变形线性增大,变形基本稳定后拱顶沉降大于水平收敛;钢拱架承受围岩压力,对确保红黏土隧道围岩的稳定起着重要作用。  相似文献   

13.
研究目的:新奥法中初期支护结构作为承受围岩压力的主要结构有着重要的作用。为研究深埋大断面隧道复合衬砌中初期支护结构的受力特性,本文以银西高铁庆阳某隧道为工程依托,通过现场监测,得到深埋大断面红黏土隧道的围岩压力、钢拱架内力与混凝土内力变化规律,分析初期支护结构内力变化规律及分布特征。研究结论:(1)红黏土大断面隧道两侧的围岩压力大于拱顶和仰拱内的围岩压力;(2)初期支护结构内力呈现出上大下小的分布规律,且钢拱架承担了大部分围岩压力;(3)可考虑在边墙及拱顶增高钢拱架标号,仰拱内减少拱架截面积,以达到充分利用材料降低造价,提高衬砌结构可靠性;(4)本研究结果可以为类似地质条件下衬砌设计优化及隧道初期支护的施工组织提供参考。  相似文献   

14.
隧道衬砌是确保运营隧道防水与结构稳定的重要结构,其受力状态会随着上覆溶洞水压力的改变而改变。鉴于此,以某小净距隧道为工程背景,利用有限元差分软件建立分析模型,研究上覆溶洞处于不同水压状态下隧道衬砌结构的受力状态,利用相应公式计算衬砌结构安全系数,结合实际数据与模拟结果对比验证模型的可靠程度,得出主要结论:拱底衬砌结构最大主应力为拉应力且其余位置为压应力,溶洞水压逐渐变化可能导致拱底破坏;整体衬砌结构最小主应力均为压应力,拱肩、拱腰与拱脚的最小主应力均随水压增加而增加;各部位衬砌结构安全系数随溶洞水压增大而减小,随溶洞水压进一步增大,拱腰处可能最先发生受压破坏。这可为处于溶洞等不良地质条件下的隧道安全稳定性研究提供参考。  相似文献   

15.
古土壤形成时期、环境有别于黄土,因此,古土壤隧道围岩物理力学性质与黄土隧道存在一定差异。银西高铁早胜三号隧道作为国内首次穿越古土壤地层的长大隧道,为系统研究古土壤的物理力学性质及隧道穿越古土壤地层时关键施工技术研究提供了有利条件。本文以早胜三号古土壤隧道为研究背景,通过基础试验得到古土壤的物理力学性质,利用现场量测结果分析古土壤隧道的沉降变形收敛规律,然后通过数值模拟验证了现场监测结果。研究表明:古土壤具有密度大、比重大、抗剪强度较大和弱膨胀性的特点;隧道沉降变形分为快速增长阶段、持续增长阶段、平稳阶段,沉降主要集中在上台阶拱顶位置;围岩收敛主要集中在拱脚附近,且随着测点距拱脚位置的减小,收敛值逐渐扩大;同时,三台阶七步施工工法是造成左右围岩收敛值不同的主要原因;针对收敛主要集中在拱脚位置这一现象,建议进行仰拱曲率优化的研究。  相似文献   

16.
以甬舟铁路金塘海底铁路隧道矿山法施工段为依托,选其深埋段Ⅳb型衬砌参数,采用荷载-结构模型,基于内力分布特点研究仰拱加深、拱脚加厚及仰拱加深+加厚拱脚3种方案下的断面优化效果。结果表明,仰拱加深0.5 m可使断面弯矩分布更加均匀,可改善各关键节点安全性能并将衬砌可承受的最大水压由拱顶以上6 m提升至38 m;拱脚段加厚0.3 m对结构弯矩分布、底鼓挠度大小及整体安全系数的提升效果较小,可承受极限水压为拱顶以上23 m;仰拱加深0.5 m+拱脚加厚0.3 m优化方案与仰拱加深0.5 m方案优化效果大体一致,故建议断面优化优先考虑仰拱加深措施。  相似文献   

17.
重庆轨道交通5号线3标段浅埋扁平超大断面隧道采用双侧壁导坑法开挖。对施工过程进行了数值模拟,并结合现场监测结果对各施工阶段围岩的稳定性进行分析。结果表明:扁平超大断面隧道拱顶受力面积大,受力部位下移,拱脚应力集中;拆除中隔墙时拱顶沉降幅度大,拱脚水平收敛对开挖过程较敏感;开挖完成时隧道仰拱隆起,应当及时封闭成环。  相似文献   

18.
银(川)西(安)高速铁路贾塬隧道三次长距离穿越不同岩性接触带,严重影响施工进度。本文建立三维数值计算模型,并结合现场监测数据,分析红黏土与砂岩夹泥岩分界面位于隧道不同位置时支护结构的位移及应力变化规律。研究结果表明:随着分界面从隧道顶部下移至隧道底部,拱顶沉降和拱腰水平收敛均逐渐增加,仰拱处初期支护应力逐渐增大;初期支护薄弱点在中上台阶。  相似文献   

19.
新近系泥岩隧道初期支护受力特性研究   总被引:3,自引:0,他引:3  
富水区泥岩隧道开挖后经常出现支护结构大变形乃至开裂现象,影响隧道的施工和长期运营安全。为掌握新近系泥岩隧道支护结构和围岩的变形动态,开展相应的室内试验与现场监控量测以及数值模拟。采用室内试验方法获得泥岩的物理力学参数;通过现场监测方法得到围岩压力、钢拱架应变;采用数值模拟的方法获得泥岩软化前、后拱顶及拱脚沉降量、围岩压力、径向位移值的大小。研究结果表明:泥岩呈弱崩解性,且具有一定膨胀性,是导致围岩变形持续时间较长的主要原因;多数测点钢拱架弯曲,导致初期支护承载力不足,进而引起初衬混凝土掉块脱落;泥岩软化后,隧道同一位置处拱顶、拱脚沉降量、围岩压力、径向位移值均远大于泥岩软化前的数值,泥岩遇水软化是导致隧道支护结构产生大变形的原因之一。研究方法和结论对新近系泥岩隧道的设计和施工有一定的参考价值。  相似文献   

20.
软岩隧道建成后的长期稳定性受岩体流变性的影响。结合现场监测数据,采用有限差分软件FLAC 3D分析了曾家坡隧道的长期稳定性及其变形控制要点。分析结果表明:曾家坡隧道开挖施工过程中岩体流变范围约为隧道开挖半径的3倍;隧道拱顶、仰拱以及边墙的变形和受力均在隧道建成5年后逐渐趋于稳定;隧道建成后5年内应加强边墙处衬砌应力和变形的监测,5年以后应重点监测隧道拱顶和仰拱尤其是拱顶的应力和变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号