首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为研究低温(3℃)养护条件和水灰比对混凝土抗氯离子渗透性和细观孔结构的影响规律及程度,采用气孔分析法和直流电量法对低温(3℃)养护条件下和标准养护条件下的不同水灰比混凝土28 d细观孔结构和电通量进行测试。试验结果表明:低温(3℃)养护条件对不同水灰比混凝土孔径分布有显著影响,使其孔径粗化严重,大孔含量增多,小孔含量减少;气孔间距系数和平均孔径都明显大于对应标准养护条件下的混凝土,且都随着水灰比增大而增大,低温(3℃)对低水灰比混凝土平均孔径影响程度大,对高水灰比混凝土平均孔径影响程度小;不同水灰比混凝土28d电通量值也明显大于其标准养护条件下的混凝土,且随着水灰比增大,电通量值逐渐增大,抗氯离子渗透性逐渐减弱;低温对不同水灰比混凝土孔结构和抗氯离子渗透性都产生不利影响,使混凝土细观孔结构劣化,抗氯离子渗透性降低,且对低水灰比混凝土的影响程度大。  相似文献   

2.
矿物掺合料对高性能混凝土抗氯离子渗透性能的影响   总被引:38,自引:3,他引:38  
采用ASTM C1202推荐的快速试验方法——直流电量法,研究了水灰比以及粉煤灰和硅粉两种矿物掺合料对混凝土抗氯离子渗透性能的影响。试验结果表明:水灰比降低,虽然可以降低混凝土6h库仑电量,但并不能有效地提高混凝土抵抗氯离子渗透能力,只有掺入矿物掺合料才能有效解决这一问题。单掺粉煤灰可以降低氯离子在混凝土中的渗透性,且随着粉煤灰掺量的增加,混凝土渗透性降低;粉煤灰的细度对混凝土28d龄期前的渗透性有较大的影响,而对后期的影响较小。单掺硅灰显著降低混凝土6h库仑电量,而且硅灰与粉煤灰复合双掺可进一步改善混凝土的抗氯离子渗透性。综合考虑,少量的硅灰与粉煤灰复合双掺是配制具有极低氯离子扩散渗透性混凝土的重要技术途径。矿物掺合料改善混凝土抗氯离子渗透性的机理主要是其在混凝土中的密实填充效应和火山灰效应。  相似文献   

3.
采用粉煤灰和矿渣粉复掺取代50%水泥,研究养护时间、养护湿度以及覆膜养护对混凝土吸水率和电通量的影响。试验结果表明:复掺矿物掺和料混凝土的标准养护时间越短、养护湿度越低、拆模前覆膜养护温度越高,混凝土吸水率越大,抗氯离子渗透性越差。在相同养护条件下,复掺粉煤灰-矿渣粉的混凝土吸水率比单掺煤灰的小,比单掺矿渣粉的大,抗氯离子渗透性能比单掺粉煤灰的好,但是比单掺矿渣粉的差。  相似文献   

4.
研究了保温养护方式下掺入水化硅酸钙晶种对混凝土水化放热、力学性能、抗冻性能和抗氯离子渗透性的影响,并分析了晶种对水化产物孔结构和微观形貌的影响。结果表明:在保温养护方式下掺入晶种会加速水泥早期水化,增大混凝土温升速率,提高混凝土早期抗压强度,但对混凝土后期强度影响不大;与蒸汽养护方式相比,保温养护方式下掺入晶种提高了混凝土的抗冻性,降低了混凝土的抗氯离子渗透性。这是由于水化硅酸钙晶种的掺入优化了水泥水化产物的孔结构,改善了水化产物微观形貌。  相似文献   

5.
针对棋盘洲长江公路大桥北锚碇大体积混凝土的开裂防渗问题,研究了单掺聚丙烯纤维、抗渗剂、膨胀剂及复掺聚丙烯纤维与抗渗剂或膨胀剂对锚碇C30大掺量矿物掺合料混凝土抗裂与抗渗性能的影响。结果表明,掺加聚丙烯纤维显著改善了混凝土的抗早期塑性收缩开裂性能,掺加膨胀剂和聚丙烯纤维均有利于降低其干燥收缩,并提高其抗氯离子和抗压力水渗透性;复合掺加膨胀剂与聚丙烯纤维抑制干燥收缩和改善抗渗性的效果优于复掺抗渗剂与聚丙烯纤维。采用聚丙烯纤维与膨胀剂的复合改性技术是提高锚碇大体积混凝土抗裂防渗性能的理想技术路线。  相似文献   

6.
为研究矿物掺合料种类和掺量对混凝土强度和耐久性的影响规律,配制了基准混凝土、单掺粉煤灰混凝土、单掺粒化高炉矿渣粉混凝土和双掺粉煤灰和粒化高炉矿渣粉的混凝土,进行了不同龄期抗压强度、早期干缩率、抗冻性、电通量、耐磨性等耐久性指标的测试。结果表明:掺矿物掺合料的混凝土早期强度低于不掺矿物掺合料的基准混凝土,但随着矿物掺合料掺量的增大,后期强度呈现出先提高后降低的趋势;双掺粉煤灰和粒化高炉矿渣粉的混凝土后期强度明显高于单掺粉煤灰或者单掺粒化高炉矿渣粉的混凝土。这是因为不同种类矿物掺合料双掺会产生超叠加效应,这种超叠加效应优化了混凝土内部孔隙结构,使得双掺矿物掺合料的混凝土耐久性能得到显著提高。  相似文献   

7.
采用Auto Pore IV 9500全自动压汞仪和智能型多功能混凝土耐久性综合试验仪,分别研究负温(-3℃)及标准养护条件下,引气混凝土净浆孔结构特性和混凝土电通量随龄期增长的变化规律。研究结果表明:龄期越长,混凝土总孔体积、平均孔径、临界孔径、最可几孔径、孔隙率和电通量减小,而骨架密度增大。掺加0.01%引气剂,可以使混凝土平均孔径、临界孔径、最可几孔径、骨架密度和电通量减小,总孔体积和孔隙率增大。负温养护条件下,含气量为4.1%的混凝土渗透性与标准养护条件下相比,在28,56,84,112和140 d龄期内渗透性增长率在70.77%~114.35%之间波动。研究结果具有一定的实用价值和参考意义。  相似文献   

8.
蒸汽养护对高速铁路轨道板混凝土渗透性的影响   总被引:1,自引:0,他引:1  
为探明蒸汽养护对采用水泥-矿渣粉复合胶凝材料的轨道板混凝土渗透性的影响规律,研究了不同养护条件下(蒸汽养护和标准养护)轨道板混凝土表面吸水率和抗氯离子渗透性能(6 h电通量和氯离子扩散系数),并分析了不同蒸汽养护最高恒温温度对复合胶凝材料水化程度的影响。试验结果表明:蒸汽养护能有效提高轨道板混凝土材料早期(28 d)和后期(56 d)抗水渗透能力,而对其抗氯离子渗透能力的改善作用则主要表现在早期,对混凝土后期抗氯离子渗透能力影响不明显;在对复合胶凝材料水化程度的影响方面,蒸汽养护会显著加快水泥-矿渣粉复合胶凝材料体系的水化进程,有利于提高水化产物密实度,蒸汽养护最高恒温不超过60℃对提高水泥基胶凝材料抗渗性更加有利。  相似文献   

9.
高岩温低湿环境下铁路隧道混凝土耐久性研究   总被引:2,自引:2,他引:0  
依托在建铁路隧道工程,针对高岩温对隧道衬砌混凝土耐久性能的影响,通过试验室模拟现场高岩温、低湿度的施工环境,研究高岩温对纯水泥混凝土、单掺粉煤灰混凝土和双掺粉煤灰、矿粉混凝土耐久性能的影响规律,并从微观形貌方面分析高岩温对混凝土耐久性能的影响机理。结果表明:高温、低湿养护环境下,3种配合比的混凝土的耐久性能均随养护温度的升高而降低,抗氯离子渗透性能单掺粉煤灰混凝土最好,纯水泥混凝土最差;抗碳化性能基本相当;微观上分析单掺粉煤灰混凝土结构更密实、孔隙率更小。  相似文献   

10.
基于养护时间、养护湿度以及覆膜养护等养护条件对混凝土碳化性能的影响,采用粉煤灰和矿渣复掺等量取代50%水泥,对混凝土碳化性能进行研究。研究结果表明:复掺矿物掺合料混凝土的标准养护时间越短、养护湿度越低、拆模前覆膜养护温度越高,混凝土的碳化深度越大。在相同养护条件下,复掺粉煤灰-矿渣混凝土的碳化深度比单掺粉煤灰的小,比单掺矿渣的大。  相似文献   

11.
针对蒸汽养护工艺和纯硅酸盐水泥配合比易影响预制混凝土管片的后期强度和耐久性问题,提出采用偏高岭土与粉煤灰复掺配制免蒸养管片。试验结果表明:掺入偏高岭土可显著提高混凝土早期强度,在自然养护条件下达到管片脱模强度要求,实现免蒸养;掺入偏高岭土可改善混凝土的抗渗性能、干缩性能和抗碳化性能;偏高岭土与适量的粉煤灰复掺可弥补单掺偏高岭土抗裂性能不足。  相似文献   

12.
高岩温隧道施工是随着各国高速交通网不断延伸而出现的新的技术问题,这种特殊施工条件会使隧道衬砌混凝土的力学性能和耐久性都受到影响。本文通过实验室内模拟高岩温施工环境,重点研究高岩温养护条件下不同矿物掺合料对混凝土力学性能及耐久性能的影响规律。结果表明:高岩温养护条件下,普通混凝土与掺合料混凝土的抗压强度均呈下降趋势,但下降幅度不同;湿度50%时,随着温度的升高,矿渣粉混凝土的抗压强度下降幅度最大,粉煤灰混凝土的抗压强度下降幅度最小,当温度超过50℃时,粉煤灰混凝土的强度反而高于矿渣粉混凝土;矿渣粉混凝土的强度对于湿度变化最敏感,80℃时,随着湿度的增大,矿渣粉混凝土的强度提高幅度最大;各种混凝土的抗渗性与抗碳化性能基本随养护温度的升高而降低,普通混凝土下降最为明显,粉煤灰混凝土的抗渗性与抗碳化性能受养护温度影响最小。  相似文献   

13.
以青藏铁路桥涵冻土层中混凝土灌注桩为背景,进行了不同引气剂掺量混凝土在持续-3℃养护环境下的抗压强度和冻融循环试验,结果表明:持续-3℃养护环境下龄期84 d时的抗压强度与标养下龄期28 d时的抗压强度相当,前者存在明显的"龄期滞后"现象,但混凝土抗压强度龄期滞后的天数与含气量关系不大,仅与养护环境有关;随着含气量的增大,混凝土的抗冻性能先增强后减弱,在抗压强度相同的情况下,混凝土的含气量在3.2%时,抗冻融耐久性指标降低幅度最小,抗冻性能最优;持续-3℃养护环境下混凝土的抗压强度虽能够最终达到标养下28 d的抗压强度,但抗冻性能降低幅度较大,对于寒冷地区混凝土灌注桩耐久性的这一特点应引起使用者高度重视。  相似文献   

14.
分析氯离子扩散系数作为氯盐环境下混凝土耐久性评价指标的原因及合理性。系统研究水胶比(0.33、0.38、0.45)、矿物掺和料种类(粉煤灰、磨细矿渣粉、偏高岭土、硅灰)、掺量及含气量等配合比参数对混凝土氯离子渗透性能影响规律;探讨氯盐环境下铁路混凝土配制要求;提出氯盐环境下铁路混凝土配合比参数限值。研究表明:氯盐环境下适当加入矿物掺和料是提高混凝土耐久性的关键技术措施;粉煤灰和矿渣适宜掺量分别为30%~50%、40%~60%;适当引气(含气量为4%~6%)能提高混凝土抗氯离子渗透性能;严重氯盐腐蚀环境下,应采用矿物掺和料复掺技术,且宜添加适量硅灰。  相似文献   

15.
高掺量粉煤灰对高性能混凝土体积稳定性及耐久性的影响   总被引:2,自引:0,他引:2  
研究了粉煤灰在较高掺量时对混凝土收缩性能、抗碳化性能、抗氯离子渗透性能与抗冻性能的影响。试验发现:粉煤灰掺量在0~25%范围内,混凝土收缩随着粉煤灰掺量的增加而减少,但粉煤灰掺量超过20%后,收缩减少的幅度变小;当粉煤灰掺量高于30%时,混凝土的碳化速度迅速增加,抗碳化能力降低;掺加粉煤灰能大幅度降低混凝土的氯离子渗透性,且随着粉煤灰掺量的增大,混凝土的抗氯离子渗透性越高;从重量损失率的指标来看,粉煤灰掺量越大,其重量损失率越小,抗冻性能越好。  相似文献   

16.
使用多孔陶粒作为内养护水的引入媒介,针对铁路桥梁工程中常用的低强C30和高强C60高性能混凝土,对比研究内养护技术对高性能混凝土抗压强度、弹性模量、抗氯离子渗透性、抗早期开裂性能的影响和变化规律。结果表明:随着内养护水用量逐步增加,C30和C60高性能混凝土各龄期的抗压强度和弹性模量略有下降,但降幅不大;当陶粒掺量为20%时,C30混凝土的抗压强度和弹性模量分别下降19.5%和4.4%,而C60混凝土的抗压强度和弹性模量分别仅下降4.9%和3.8%;采用内养护技术后,混凝土的抗氯离子渗透性能明显提高,当陶粒掺量为20%时,C30和C60混凝土电通量的降幅分别达41.0%和58.5%,且C30和C60混凝土均在平板约束早期塑性开裂测试中历经48h未出现开裂,可见选择合理的内养护配合比,可以有效改善不同强度等级高性能混凝土的抗早期开裂性能,陶粒掺量过高或过低均无法达到理想的抗早期开裂效果。  相似文献   

17.
掺矿物掺合料结构混凝土性能与其孔隙率的关系研究   总被引:1,自引:1,他引:0  
通过对现场结构混凝土进行钻芯取样,研究了强度等级分别为C25和C30且掺用27%~63.5%矿物掺合料混凝土的抗压强度、抗碳化性能以及抗氯离子渗透性能,并通过采用压汞测孔法和可蒸发水含量法测试了相应混凝土的孔隙率,分析了混凝土宏观性能与其孔隙率的关系。研究结果表明:所测结构混凝土具有良好的宏观性能和微观结构;采用这2种方法测定的孔隙率均与混凝土的宏观性能存在良好的对应关系。  相似文献   

18.
墩身混凝土施工、养护过程中时常出现“砂线”问题,文章提出调整胶凝体系的同时掺加保水剂,通过对比改性后混凝土的泌水率、坍落度、含气量、抗压强度、电通量值以及抗氯离子扩散系数得出如下结论:①粉煤灰-矿粉-水泥胶凝体系保水剂掺量 0.05% (B10)泌水率最低,相当于水泥胶凝体系(B0)的29.88%,当保水剂掺量大于 0.05% 时,坍落度值、含气量已不满足于墩身混凝土设计要求;②强度最优配比为 B10,其 56天强度可到达 59.4 MPa,相当于 B0 的 123.24%;③对比保水剂掺量 0.05% 时,水泥胶凝体系(B3)、粉煤灰-水泥胶凝体系(B6)、矿粉-水泥胶凝体系(B8)、粉煤灰-矿粉-水泥胶凝体系(B10)在 56天标准养护条件下电通量、抗氯离子扩散系数发展规律,得出不同胶凝体系发展趋势为 B3>B6>B8>B10。  相似文献   

19.
为配合青藏铁路工程应用,配制抗冻性高、强度较高、适合于青藏铁路预应力混凝土梁的高性能混凝土。试验结果表明:掺加引气剂与矿物掺合料如硅粉与粉煤灰,均有利于混凝土达到C50或C60强度等级以及抗300次冻融循环的要求。在采用适宜掺量的外加剂与掺合料的情况下,高性能抗冻混凝土在性能上具有突出特点,即良好的抗冻性并不要求混凝土具有很高的强度。对于0.32水胶比的混凝土,引气剂明显提高混凝土的抗冻性;用活性掺合料等量置换水泥,使混凝土28d强度下降,但4个月后混凝土强度持续增长,达到空白混凝土的强度。新拌混凝土坍落度不宜太小,宜为16~22cm,以利于成型密实,确保抗冻性。MIP(压汞测孔)试验结果表明,引气剂使混凝土内的孔体积增大,并使混凝土内孔分布向大尺寸方向移动,导致平均孔径增大,这可能正是混凝土抗冻性提高的原因之一。  相似文献   

20.
CCM复合掺合料具有物理填充作用,能够明显提高浆体硬化后的密实度和强度。通过掺加水泥用量15%、20%的CCM复合掺合料配制高性能混凝土来进行试验研究,结果表明,掺加CCM复合掺合料后混凝土强度发展对温度不敏感,混凝土水化温度降低。通过在京沪高铁悬灌梁中应用,证明20%掺量的CCM复合掺合料高性能混凝土能够提高3 d龄期的弹性模量和抗压强度,缩短张拉龄期,应用效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号