首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
对广深港客运专线福田站CRTSⅠ型减振型板式无砟轨道的减振效果开展了现场测试,测试结果表明:对于4~200Hz范围内各频带的振动分量,减振轨道断面各测点较非减振轨道断面被显著削减,且较高频率振动分量的削减量较较低频率振动分量的大;现场选取的两个测试断面,减振轨道断面的地面铅垂向计权加速度振级较非减振轨道断面的减小了5.5~6.5d B;福田站采用CRTSⅠ型减振型板式无砟轨道之后,沿线环境振动可满足《城市区域环境振动标准》(GB 10070-1988)所规定居民、文教区振动昼间小于70d B,夜间小于67d B的要求,达到了预期的减振效果。  相似文献   

2.
更换减振扣件前后地铁运营引起地面振动的研究   总被引:2,自引:0,他引:2  
选择北京地铁5号线宋家庄—刘家窑区段,在更换减振扣件前后2次测试地铁正常运营引起的地面水平及垂向振动加速度,对其进行频谱分析;建立轨道—隧道—土层的三维有限元模型,利用实测数据,研究垂直于地铁线路方向不同距离的振动加速度响应规律。结果表明:地铁线路位于曲线段时,地面水平与垂向振动加速度峰值和有效值基本相等;在安装DTⅥ2扣件的轨道地段,地铁列车运营引起的地面主要振动频率为40~80 Hz,在安装Vanguard扣件的轨道地段为20~40 Hz,说明Vanguard扣件有较突出的减振效果;随着距地铁隧道中心线距离的增加,地面振动加速度响应表现出衰减的趋势,在离开隧道轴线一定距离处,存在地面振动加速度放大区,水平和垂向振动加速度放大区的位置有所不同。  相似文献   

3.
采用嵌入式环境振动智能监测系统,获得了紧邻地铁车站的地下商业建筑楼板铅垂向加速度时程谱与傅里叶谱。对优势频率振动能量衰减规律进行了拟合分析,获得了二次振动影响范围;通过铅垂向Z振级计算,对该地下建筑环境振动状况作出了评价,并给出了振级随距离衰减关系的数学模型。研究成果可为类似工程提供参考依据。  相似文献   

4.
为探究地铁列车以80 km/h速度运营下,隧道内轮轨振动噪声与车内振动噪声的关联性,针对北京某地铁线路,利用压电式加速度计、噪声传感器、数据采集分析仪等设备开展系统的振动、噪声测试。从振动加速度时域、频域以及振动加速度级、铅垂向Z振级、累计百分之十Z振级、最大Z振级、等效连续A声级等角度对测试数据进行评估与分析,根据测试结果建立轮轨振动噪声与车内振动噪声的关联性。结果表明:车内振动加速度最大值约为道床的1/5;道床与车内的振动响应大致相同,两者的卓越频率均主要集中在300~350 Hz、500~700 Hz, 1/3倍频程中心频率均集中在512 Hz附近;轨旁噪声比车内噪声高28~30 dB。  相似文献   

5.
为研究高速铁路路堑在高速列车荷载下的地面垂向振动随距离传播规律,对宝兰高铁路堑段地面垂向振动进行现场试验,对现场试验的数据从时域和频域两个方面进行分析揭示地面垂向振动加速度响应特征。结果表明,路堑垂向振动加速度在距离线路中心线12.5~40 m总体呈衰减趋势,靠近线路中心线处12.5~20 m处垂向振动加速度衰减较快,较远处20~40 m处衰减速度较慢。地面垂向振动加速度在各测点处由60 Hz及100 Hz附近的频率成分主导,随着距离的增大,110 Hz左右的高频成分衰减很快,到了距线路中心线20~40 m,振动加速度在60 Hz左右的频率成分占优。依据现场工况,建立了列车-轨道-路堑-地基数值分析模型,并通过数值试验的方法,设置不同的场地速度特性,分析不同场地条件对路堑振动响应的影响。数值分析表明,场地速度特性(覆盖层与下卧层模量比、覆盖层厚度)是影响地面振动剧烈程度的重要因素,地基覆盖层与下卧层模量比越大,地面振动越强烈,模量比一定,覆盖层厚度越小,地面振动越大。  相似文献   

6.
建立有轨电车-钢轨及包覆材料-轨道-沿线结构模型,分析钢轨柔性包裹材料条件下,有轨电车线路及其沿线结构的振动噪声特征。研究发现,地下小半径线路条件下,安装柔性包裹材料后,钢轨垂向振动加速度级约降低7.4 dB,合建结构的垂向振动加速度级减小约0.9~2.0 dB,主要减小频段为15.0~40.0 Hz;曲线内外侧噪声峰值降低约3.5~9.2 dB(A),合建结构的噪声峰值降低幅度不超过1.0 dB(A)。地面小半径线路条件下,安装柔性包裹材料的钢轨垂向振动加速度级约降低7.6 dB,传播至沿线整体结构的垂向振动加速度级约减小1.5~3.8 dB,主要减小频段为14.0~18.0 Hz;沿线噪声峰值降低约2.0~5.8 dB(A)。  相似文献   

7.
以宁波地铁3号线一期工程出入段线类矩形盾构隧道为研究对象,在隧道内与地面布置加速度传感器进行同步测试分析,测试分为一列列车运行与两列列车同向并行运行两种行车工况。结果表明:两列列车同向并行运行工况与一列列车运行工况相比,同一测点振动加速度有效值明显增大;各测点振动加速度级在绝大部分频段均有增大,且在4 Hz处增大最显著;两种行车工况下,过车引起的振动由隧道壁向地面各测点传播过程中,呈波动衰减趋势,高频段振动传递损失较低频段大,大部分测点在5 Hz以内频段传递损失均出现负值,说明此频段附近振动加速度从隧道壁传递至地面有放大现象;两列列车同向并行运行工况对环境振动评价影响较大,在线路设计时,建议考虑列车会车对环境振动的影响。  相似文献   

8.
1.测试时要按三维正交轴向,1/3倍频程时6.3~1250Hz、倍频程时8~1000Hz,计权测试时频率覆盖范围为5~1500Hz的通用方法进行。 2.振动方向:由手握取的振动设备、工件、手柄或控制装置上的适当坐标原点引出测试的三维坐标方位。评价时,取其中最大计权加速度(级)  相似文献   

9.
地基强夯振动测试分析及防振动措施   总被引:2,自引:0,他引:2  
研究目的:合武铁路红安综合工区地基采用强夯处理,对场地附近居民房屋造成严重振动影响.为确保施工时民房安全,保护居民生活环境,特对强夯振动进行测试分析并提出可靠的防振动措施.研究结论:强夯产生强烈的冲击振动,如不采取减振措施,紧邻场地的居民房屋可能出现破损,民房室内铅垂向Z振级超过环境标准限值;强夯振动主要频率远离建筑物自振频率,不会引起建筑物共振;隔振沟是降低强夯振动影响的有效措施,建议将隔振沟加深并清空沟内杂物,必要时对沟壁进行喷浆支护,以进一步提高隔振效果;对紧邻现场的民房住户应临时搬迁,开展施工振动监控,施工完毕后进行必要的结构修复.  相似文献   

10.
为研究地铁小半径曲线波磨地段列车通过对地面振动和室内二次噪声的影响,在地铁某小半径曲线波磨地段展开实车测试。在列车通过速度分别为40km/h、50km/h 和60km/h 的条件下,分别测试钢轨打磨前后隧道内钢轨、道床和隧道壁的振动加速度,地上室内和室外振动加速度、室内二次噪声。结果表明,钢轨打磨前室内振动超标约7.3~15.7dB,二次噪声超标约1.9 ~11.5dB;钢轨打磨后仅室内振动在行车速度为60km/h时超出夜间标准约1.7dB,其余均不超标。测试结果证明钢轨打磨对于减轻地铁引起的振动和二次噪声的有效性。  相似文献   

11.
为研究“房桥合一”轨道层结构车致振动特性与传播规律,选择天津西站轨道层结构,测试客、货列车通过时的轨道层结构振动加速度响应.16种工况共128组数据的分析结果表明:在列车低速通过时,“房桥合一”轨道层结构的加速度振级范围为83~113 dB;同一测点在相同振源距离、相同车型下,其振级随车速的增加而增大;在相同车速和车型下,测点的振级随距振源距离的增加而呈非线性减小,减小程度随距振源距离增加而降低.车速对“房桥合一”轨道层结构的主要车致振动响应频率的影响不大;距振源越近,频谱峰值越大;车速越高,频谱峰值越大.客、货列车对“房桥合一”轨道层结构的激振频率不同;货车对结构有低频激励影响,且高频激振不稳定;客车高频激励较为稳定.采用点振源函数拟合“房桥合一”轨道层结构的车致振动响应,获得了可以表征“房桥合一”轨道层结构车致振动传播规律的振动衰减曲线.  相似文献   

12.
以DZⅢ型扣件为研究对象,建立车辆-轨道垂向耦合Timoshenko梁模型,计算钢轨垂向振动加速度,并与一地铁线实测结果进行对比,分析扣件胶垫老化后刚度的变化对轨道振动的影响。结果表明:计算结果和实测结果基本吻合;随着胶垫老化,胶垫刚度从30 kN/mm增加到60 kN/mm时,钢轨垂向振动加速度没有明显的变化;胶垫刚度从30 kN/mm增加到90 kN/mm时,钢轨垂向振动加速度最大值增加了112%,即胶垫刚度增大2倍以上时,钢轨振动加速度所受影响较大;当钢轨振动中心频率125 Hz时,胶垫刚度变化对钢轨振动的影响较小;当钢轨振动中心频率在125~1 500 Hz时,胶垫刚度变化对钢轨振动的影响明显,加速度振级变化最大值可达14.22 dB;随着胶垫刚度的增大,轮轨力的变化比较明显,轮轨脱离的时刻明显增多。  相似文献   

13.
本文针对将既有铁路区间扩建为地上、地下单线双层铁路方案,建立铁路-大地-建筑物三维耦合动力学模型,分析列车以80 km/h的设计速度在该线路上运行对沿线不同结构形式建筑物的振动影响。研究结果表明:(1)列车上、下层线路同时运行引起的振动对建筑物的影响最大,下层线路运行引起的振动对建筑物的影响大于上层线路运行;(2)列车运行引起的振动对距离线路中心相同的砌体结构影响大于框架结构,在相同运行工况下,砌体建筑物分频最大振级比框架建筑物平均高约10.4 dB;(3)框架建筑物比砌体建筑物随楼层的增加具备更强的振动传递性;(4)列车在扩建区间内运行时,砌体结构建筑物的环境振动均超出夜间限值,其首层楼板的分频最大振级在不同运行工况下超出限值5.4~12.1 dB。研究成果可以为既有线路改扩建提供参考。  相似文献   

14.
为了解不同地铁列车作用下钢弹簧浮置板道床的结构动力响应,分别选取隧道埋深、结构等条件类似的已运营地铁线路进行测试与分析。结果表明:相同列车速度下,A型车作用下钢弹簧浮置板道床的钢轨、道床和隧道壁振动加速度级均大于B型车,对邻近区域和建筑的振动和二次结构噪声影响更大,但在评价城市区域环境振动(人体承受建筑物内振动)时,计权后A型车与B型车Z振级较为接近;在A型车作用下,实测钢弹簧浮置板区段的钢轨、道床在1/3倍频程中心频率80~100 Hz和400~630 Hz存在峰值;隧道壁在1/3倍频程中心频率80~100 Hz和400 Hz附近存在峰值。  相似文献   

15.
近年来,我国大城市地铁线网和城市燃气管网密度日益增大,地铁线路不可避免下穿燃气管线及其调压站,而地铁列车运行对燃气设施产生的振动影响及其控制措施研究少见报道。以某地铁线路下穿燃气调压站实际工程为分析对象,综合采用地铁振动类比测试和数值仿真计算方法对燃气调压站受地铁振动影响情况进行了预测分析,提出"减振垫-厚重筏板基础-减振垫-箱形设备基础"隔振控制方案,并对其隔振效果进行数值仿真分析。分析结果表明:控制措施实施前,3个燃气设备基础Z振级预测值为78.3~81.4 dB,加速度峰值为0.155~0.22 m/s^2;控制措施实施后,Z振级降为69.9~73.4 dB,加速度峰值平均下降61%,控制措施效果明显。  相似文献   

16.
以南昌地铁1号线的某标段工程为研究背景,建立曲线地段的轨道—隧道—大地三维有限元模型,同时考虑竖向和水平向轮轨作用力的影响,计算得到了地铁列车通过曲线时诱发的环境振动。计算结果表明:当曲线的半径一定时,地铁在曲线地段运行引起的钢轨、隧道壁和地面振动响应均与列车行驶速度密切相关;曲线地段地面水平向振动加速度级要大于竖向,平均高出5 d B;水平向和竖向振动加速度级均表现出随着与隧道中心线间距离的增加而呈波动性衰减特性,频率越高振动加速度级衰减的速度越快;环境振动在衰减过程中都会出现放大区,竖向和水平向的振动放大区出现的位置有所不同,但振动放大区的主频差别不大。  相似文献   

17.
在环境振动的实测和分析中,经常会遇到如何评价多振源对振级的影响问题。根据加速度振级的定义,基于能量原理,建议用加速度有效值平方和开方的方法进行评价。通过两个不同振幅比简谐振动在多频率下的合成振动的计算分析,论证了方法的有效性。建议利用振级叠加修正值考虑多振源振级叠加、利用振级分离修正值考虑总振级和背景振动分离的简便方法。  相似文献   

18.
为研究地铁交叠式换乘站在复杂动荷载工况下的结构振动特性,基于轮轨耦合动力学原理建立车辆-轨道耦合模型及轨道-车站有限元模型,结合地铁车站现场测试,分析不同线路交叠与单线运行、列车进站制动、出站启动及不同载重等工况下对地铁交叠式换乘站结构的振动特性影响。研究结果表明:地下一层A号线运行引起的车站振动响应大于地下二层B号线运行引起的车站振动响应;地铁列车出站工况下的楼板振动加速度大于进站工况;无论哪种工况,其振动响应主要集中在25~50 Hz和90~140 Hz频段上,A号线进出站引起的同层楼板振级超过振动限值,而B号线引起的同层站台振级满足振动限值;B号线列车单线在不同时段的载重越大,车站结构振动响应及增幅越大;地铁交叠式车站设计时,需考虑地下一层及列车出站启动工况的减振措施。  相似文献   

19.
以某地铁车辆段试车线列车运行的振动特性为主要研究对象,实测了列车以不同速度出入库时所引起的轨道区、地面区和室内区的振动加速度响应.从时域和频域角度分析了振动传播特性.结果表明:轨道区振动以高频成分为主,且随振动传播过程衰减较快;随着列车速度的增加,各测点的振动强度整体呈现增大趋势,但地面和室内测点的振动小于63 Hz,...  相似文献   

20.
以成都—都江堰高速铁路工程为背景,通过现场测试试验,研究桥上无砟轨道铺设橡胶减振垫的减振效果.结果表明:铺设橡胶减振垫后,减振垫上钢轨和轨道板的振动略有放大,但影响甚微,而减振垫下底座板、桥梁及地面的振动显著降低,其中底座板的最大振动加速度降低了85%左右;时域内,在距线路中心线0,15和30 m处地面的最大竖向加速度振级均降低了9.5dB左右;频域内,在0~6.3 Hz频段内,橡胶减振垫的减振效果不明显;在8~20 Hz频段内,由于与轨道—桥梁—大地系统本身的自振频率重合,反而放大了地面的振动;在25~100 Hz频段内,减振作用明显,且距线路中心线越远,减振效果越显著,但距线路中心线不同距离处对应最大减振作用的频段和插入损失值不同,0m处最大减振作用出现在31.5 Hz频段,插入损失值为7.8 dB,15和30 m处最大减振作用均出现在40 Hz频段,插入损失值分别为13.6和16.4 dB.可见,橡胶减振垫能够对25 Hz以上频段的振动起减振作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号