首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
我国对列车气动阻力的研究主要考虑列车的头型、断面形状和底部外形等方面,在受电弓减阻方面也主要是考虑受电弓的结构外形,然而对于受电弓残阻的风洞试验研究比较少.为了获得某高速列车的空气动力特性,并考察受电弓各种减阻措施的效果,在中国空气动力研究与发展中心低速空气动力研究所的8 m×6 m风洞中进行了列车模型的风洞试验,在风洞试验中通过在受电弓前部安装各种导流罩和风挡来测试其对受电弓阻力的影响.试验结果表明:受电弓的存在会对列车的气动阻力有约3.2%的增加;在头车尾部安装反向导流罩能有效的降低受电弓的气动阻力;在受电弓前郝安装风挡,这种风挡在侧偏角为0°时对受电弓的减阻有一定效果.  相似文献   

2.
转向架作为高速列车大面积裸露在外且外形复杂的运行部件受到列车底部气流的直接作用,区域气动外形结构对高速列车整车气动阻力具有重要影响。基于三维稳态SST k-ω双方程湍流模型,采用数值仿真方法研究了轴箱外置式转向架不同包覆方式对高速列车气动性能的影响。研究了转向架区域安装小裙板、半包裙板、全包裙板、全包裙板+小底板以及全包裙板+大底板等5种方案下的高速列车气动性能,比较了不同方案下高速列车气动阻力的变化规律,阐明了高速转向架包覆方式对整车气动阻力、车底流动特性以及列车表面压力分布的影响。研究结果表明:随着转向架裙板包覆面积的增加,转向架腔后端板受到的气流冲击逐渐减弱,后端板上的正压分布降低,列车转向架区域周围的边界层厚度逐渐减小,转向架区域内的压力分布差异性逐渐减小,从而实现了列车整车气动阻力系数的降低。与小裙板模型相比,半包裙板、全包裙板、全包裙板+小底板以及全包裙板+大底板模型的列车气动阻力系数分别降低了5.2%、8.65%、10.3%、11.1%。对于轴箱外置式转向架来说,全包裙板+大底板方案可有效改善转向架区域流场,降低整车气动阻力。研究得到的转向架包覆方式将为新一代高速列车气动...  相似文献   

3.
采用风洞试验方法对城际动车组气动阻力优化进行研究,获得不同侧滑角下的城际列车明线及横风气动阻力,并分析头部外形、风挡结构、车底设备对动车组气动阻力的影响规律。研究结果表明:侧偏角在0°~10°范围内,随着侧滑角增加,头车阻力系数逐渐增大,中间车阻力系数先增大后减小;尾车阻力系数对于侧滑角最敏感,头车次之,中间车最小。无横风时,设置外风挡显著减小了头车及尾车阻力系数,但导致中间车阻力系数增加约16.7%,整车阻力系数仅减小4%左右。安装设备舱后,车体底部杂乱的气流变得平顺,无横风时整车气动阻力系数较减小22%,而横风环境下整车气动阻力系数降幅可达25%。  相似文献   

4.
为提高高速列车运行过程中的气动性能,降低运行成本,针对受电弓舱气动结构外形,利用计算流体力学原理对矩形、椭圆形、胶囊形和六边形4种内置式受电弓舱结构进行数值模拟计算,计算得到矩形内置式受电弓舱结构能够最大程度改善受电弓气动阻力与气动升力性能。在此基础上,以矩形内置式受电弓舱主要结构参数为优化设计变量,受电弓气动阻力和气动升力为优化目标,选取最优拉丁超立方设计的试验设计方法建立响应面近似模型,采用第二代非劣排序的遗传算法(Non-dominated sorting genetic algorithm-Ⅱ, NSGA-Ⅱ),对矩形内置式受电弓舱气动结构外形进行多目标优化设计。结果表明:完成320次优化迭代计算后得到一系列Pareto优化结果,优化后的模型可使受电弓气动阻力最多降低5.9%,受电弓气动升力最多降低2.5%,与原始模型相比,受电弓舱倾角增大,其余设计变量变化不大;高速列车运行时,受电弓舱倾角越大越有利于改善受电弓部位气动阻力和升力性能。  相似文献   

5.
受电弓导流罩是改善高速动车组气动性能的重要部件。为降低高速动车组受电弓导流罩区域的气动阻力,基于DOE(实验设计)方法对优化空间均匀采样,进行了涉及气动性能、结构强度等性能指标的多学科优化设计;然后借助NCGA(多目标优化遗传算法)建立近似模型,寻求气动阻力、结构强度综合性能最佳的导流罩结构。结果表明,最佳受电弓导流罩方案的整车气动阻力比初始方案降低5%,同时压力、变形满足设计要求。  相似文献   

6.
空调设备作为维持轨道车辆车内乘客舒适度的重要组成部分,其外形结构对列车的气动阻力会产生影响.合理的空调导流罩安装角度可以有效降低列车气动阻力.利用计算流体力学(Computational Fluid Dynamics,CFD)方法研究空调导流罩安装角度对160 km/h市域列车气动阻力的影响.研究结果表明:空调导流罩安装角度越小,整车气动阻力越小,相对于无导流罩(90°)工况,导流罩安装角度为15°时,整车减阻达10%.头车流线型气动阻力系数随导流罩角度变化不大,除尾车流线型部分外,其他车辆气动阻力系数随着导流罩安装角度的增大而增大,尾车流线型气动阻力系数随导流罩安装角度的增大而降低.导流罩气动阻力随安装角度的增大而增大,不包含导流罩部分的空调气动阻力随导流罩安装角度的增大而降低.  相似文献   

7.
通过对缩比为1:8高速列车模型在8m×6m风洞进行的列车风洞试验,研究列车零部件其中包括空调导流罩,受电弓,受电弓导流罩,车门的形状位置发生变化时,对列车气动性能的影响,并对试验结果进行了分析,研究结果表明:受电弓的位置和布置形式会对整车阻力产生影响,当中间车门凹陷时,整车阻力增加,加有导流结构的门有效的改善了门凹陷引起的阻力增加,空调导流罩很好的顺形结构对阻力影响不大。  相似文献   

8.
采用基于SSTκ-ω的DDES数值模拟计算方法,对城际列车的气动阻力进行研究。分析城际列车的阻力分布及组成,根据列车流场变化对列车表面进行平顺化,主要优化车下设备、风挡和空调等部位,分析各种措施减阻效果。通过对结果的分析对比,得出了其变化规律:列车气动阻力主要由压差阻力组成,占总阻力的70%~90%;列车转向架、车下设备、受电弓及风挡连接处流场变化比较剧烈,需通过外形优化进行减阻。优化模型减阻效果显著,以设备舱的形式封装车下设备,总气动阻力下降3.7%;封装车下设备的同时采用外风挡,列车总气动阻力下降12.7%;增加2种不同角度的空调导流装置,总气动阻力分别下降16.3%和18.9%。  相似文献   

9.
为研究高速列车受电弓安放位置和受电弓导流罩嵌入车体高低对气动噪声的影响,基于计算声学理论,建立高速列车气动噪声模型。高速列车模型采用四节编组,包括头车、两节中间车和尾车。受电弓分别安放于02车一位端、02车二位端和03车一位端,并考虑受电弓的开/闭口方式。研究结果表明:沿列车长度方向,受电弓分别安放在02车一位端、02车二位端、03车一位端的受电弓导流罩区域的气动噪声最大声压级呈减少趋势,且这种减小趋势与受电弓开闭口方式无关;受电弓导流罩安放在同一位置时,受电弓以闭口方式运行的受电弓导流罩区域声压级均小于开口方式,最大声压级相差1.1 dBA;采用dlz3模型(受电弓导流罩与车顶表面平齐)的气动噪声性能最优,最大声压级减小2.3 dBA。  相似文献   

10.
采用计算流体力学方法,在对鼓宽形、椭球形、梭形、扁宽形4种类型头部外形列车明线运行阻力及基本气动性能分析的基础上,对轨侧压力随不同曲面形式和空间位置的变化规律进行研究。结果表明:4种类型列车速度为250km/h明线运行时鼓宽形列车阻力最大,梭形最小,最大相差7.4%;鼓宽形列车引起的轨侧压力变化峰峰值最大,其次是椭球形、梭形,扁宽形最小,最大相差24.4%;纵剖面形线对轨侧压力变化的影响大于水平剖面形线,如不同纵剖面形式的鼓宽形和扁宽形列车引起距轨面1.5 m位置测点压力变化分别为721.62,545.71Pa,相差24.4%,而不同水平剖面形式的鼓宽形和椭球形列车引起相同测点的压力变化分别为721.62,700.44Pa,仅相差2.9%;4种曲面形式列车引起的轨侧压力变化均随距轨面高度、轨道中心线横向距离的增加而减小,规定测点压力变化峰-峰值均满足EN标准中小于800Pa的要求。  相似文献   

11.
针对常温常导高速磁浮列车头型的几何特点,将其分为流线型和设备舱2个部分,采用改进的VMF参数化方法和曲面离散方法,分别进行参数化设计;对提取的12个设计参数,结合计算流体力学方法、支持向量机模型和多目标粒子群算法,以整车气动阻力系数和尾车气动升力系数为优化目标,以头车气动升力系数为约束条件,进行高速磁浮列车头型多目标气动优化设计,并进行设计参数的灵敏度分析;对优化外形进行工程化改进和风洞试验验证。结果表明:参数化设计方法能够利用较少的设计参数描述高速磁浮列车头型;减少计算量且提高优化效率的支持向量机模型的预测精度满足设计要求;头型长度是影响高速磁浮列车气动性能的关键设计参数,水平剖面型线对头尾车气动升力的影响较为显著;较原始外形,采用根据工程设计要求改进的优化外形后,整车气动阻力系数减小19.2%,头车和尾车气动升力系数分别减小24.8%和51.3%。  相似文献   

12.
采用计算流体力学的方法,分别分析了地铁车辆在明线行驶和通过隧道时,车辆转向架及周围裙板结构对地铁车辆整车气动性能的影响。计算结果表明,安装裙板可以有效降低地铁车辆转向架区域的气动阻力,其中对第1台转向架的影响最为显著,但同时也会导致列车车身阻力的增加;安装裙板后的地铁车辆在明线行驶时,整列车的气动性能得到明显改善,但当其通过隧道时,整列车的减阻效果并不明显。  相似文献   

13.
采用大涡模拟法和FW-H方程计算截面为矩形、圆形、椭圆形时受电弓绝缘子的气动噪声,确定了优化的受电弓绝缘子截面形状。研究结果表明:对同一个模型,噪声在各声接收点的分布规律基本相同,只是幅值不同;对不同模型,声压在各声接收点的分布规律不同;绝缘子截面从矩形→圆形→椭圆形,最大声压所在的频率区逐渐降低;从降低气动噪声的角度出发,优化的绝缘子截面形状应该是椭圆形,且椭圆的长轴应跟气流流向一致;加大受电弓零部件尺寸,减少受电弓零部件数量,有利于降低受电弓的气动噪声。  相似文献   

14.
受电弓安装在车顶,是列车主要的气动噪声源之一,提高受电弓抬升力的稳定性和降低其气动噪声是高速铁路空气力学的一个重要课题。概述了受电弓风洞试验的发展历史,同时,介绍受电弓大型低噪声风洞的升力特性及气动噪声评价方法的最新研发状况。  相似文献   

15.
以国内受电弓制造商研制的新型高速受电弓为研究对象,通过风洞试验对新型高速受电弓的空气动力学性能从气动抬升力和气动总阻力两个方面进行研究,同时结合两种试验数据对该新型高速受电弓的气动抬升力性能进行分析,通过数据拟合得出气动抬升力与风速的关系式,最后通过线路运行试验进行了验证。  相似文献   

16.
为改善高速弓网系统的受流质量,研究不同滑板间距的受电弓滑板非定常气动特性。基于计算流体动力学理论,建立受电弓空气动力学模型;通过有限体积法求解三维瞬态不可压缩Navier-Stokes方程和湍流模型;采用分离涡模拟方法分析不同滑板间距的受电弓滑板非定常气动力的时域特性。研究结果表明:受电弓前滑板和上框架尾流区流场对后滑板流场和气动力产生影响;随着滑板间距增大,前滑板尾流对后滑板流场结构的影响逐渐减小,后滑板周围流场结构与前滑板周围流场逐渐相似,流场紊乱程度减小;后滑板升力呈现由负升力向正升力过渡的变化趋势,且波动范围较大。  相似文献   

17.
随着高速列车运行速度的提高,列车外形对气动性能的影响越发显著。以中国标准动车组为原型建立1:8比例3车编组仿真模型,对3种转向架裙板减阻方案、5种排障器导流罩减阻方案、4种车厢连接处外风挡减阻方案进行风洞试验。在60m/s风速,0°侧偏角条件下,裙板最优方案能使整车减阻10.2%;排障器导流罩最优方案能使整车减阻2.1%,外风挡最优方案能使整车减阻1.8%。试验结果为进一步优化中国标准动车组气动外形提供了理论参照。  相似文献   

18.
文章利用Fluent软件对受电弓导流板气动特性进行二维数值研究,计算了不同来流攻角时导流板翼型周围流场的压力分布和速度分布,并得出相应角度下的升力及阻力系数,求出导流板产生的升力及阻力,为受电弓稳定受流的气动补偿控制做出可行性预测。  相似文献   

19.
在长期的高速列车运营过程中,极易形成前后车辆的不同形式偏置,造成列车气动性能改变,甚至可能引发行车平稳性问题,极大影响乘坐舒适性和安全性。以高速列车尾车作为研究对象,探究尾车上下偏置时,高速列车尾部流场变化以及气动特性。基于SST k-ω双方程湍流模型,采用数值仿真方法研究了350 km/h高速列车尾车无偏置、尾车下降20 mm、尾车下降40 mm、尾车下降60 mm、尾车上升20 mm、尾车上升40 mm以及尾车上升60 mm 7种工况下列车的气动性能,分析高速列车气动阻力的变化规律,揭示了不同垂向位移下高速列车尾部流场特性以及列车表面压力分布情况。研究结果表明:高速列车尾部垂向位移对列车整体气动阻力影响较小,但对高速列车气动阻力分布以及流场特性造成一定影响。当尾车偏置位移达到60 mm时,列车车体气动阻力相对于无偏置工况分别降低了-1.11%和2.64%,转向架气动阻力相对无偏置情况下分别降低了11.35%和-17.43%。此外,尾车偏置对列车近尾流区域流场结构有一定影响,尾车鼻锥下方排障器周围漩涡结构由双漩涡结构向单漩涡结构转变;鼻尖处漩涡结构随着尾车高度下降而增大,随着尾车高度...  相似文献   

20.
为减小动车组车载设备的气动阻力,针对受电弓检测装置左右设备分别建立单体和3节车编组的数值计算模型.基于空气动力学的数值计算方法,将列车明线运行工况归结为定常不可压缩黏性流体流动问题.利用结构化网格划分软件对计算区域进行离散化并验证网格无关性,再采用标准k-ε湍流模型预测受电弓检测装置周围流场,对比分析不同列车速度、运行...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号