首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
冷却混合动力模块:混合动力模块集成在发动机的高温回路中以便散热,如图24所示。当发动机关闭时,电动辅助水泵可确保冷却液继续循环。可通过真空控制的转盘阀使混合动力模块与冷却系统分离,从而使发动机更快地升温。传感器将测量混合动力模块中的温度,并将测量值传输到电源电子装置中的控制单元。冷却电源电子装置:电源电子装  相似文献   

2.
正9.加热和冷却策略(1)高压蓄电池加热当车辆行驶或高压蓄电池充电时,VSC监测高压蓄电池的内部温度。保持该温度是为了确保蓄电池实现最佳的输出并保持尽量长的使用寿命。只有在车辆插入电源进行充电时,高压蓄电池才会得到加热。当电池温度低于20℃且冷却液温度低于22℃时,蓄电池加热将被激活。高压蓄电池加热回路示意图如图43所示,BECM会激活高压蓄电池泵、高压蓄电池加热器和隔离阀,从而将冷却液转移到加热器。这将会加热冷却液并  相似文献   

3.
三、制冷剂和冷却液循环回路 针对新研发的电气化驱动单元以及高压蓄电池Se16,对G08 BEV的制冷剂和冷却液循环回路进行了调整.对于这一全新代次的高压蓄电池(第5.0代),电池单元模块的冷却通过车辆冷却液循环回路进行.由于电池单元模块的冷却而受热的冷却液会通过冷却液/制冷剂热交换器和配套的制冷剂循环回路加以冷却.  相似文献   

4.
<正>捷豹I-PACE采用了先进的热管理系统,不仅为驾驶员和乘客保持了舒适的环境,更重要的是用于恒定保持20~25℃的高压(HV)蓄电池理想工作温度。热管理系统综合利用液冷方式、热交换器和增强型空调系统,其中还包含一个热泵流程。这可确保HV蓄电池以最佳效率进行工作,从而在所有条件下实现最长的续航里程。本文介绍热管理系统冷却回路。I-PACE具有3个冷却回路:  相似文献   

5.
空调压缩机作为最大功率要求达3.2kW的耗电设备,空调压缩机(如图24所示)与288V镍氢(NiMH)蓄电池电源相连接。电源电子装置通过高压电缆将直流电流从蓄电池传输至空调压缩机。电源电子装置中集成了用于空调压缩机的保险丝。虽然电源电子装置的其他所有连接都是单线电缆,但空调压缩机的连接电缆却是四线的,其中两根是用于直流电源的电极,另两根是用于保护整个系统完整性的指示线路。  相似文献   

6.
纯电动汽车动力电池在低温环境下会出现工作效率急剧下降的问题,文章针对该问题设计了相应的热管理方案。低温环境下,在电动汽车电机开始工作之前,采用带反馈调节功能的正温度系数(PTC)加热系统进行汽车动力电池预加热。通过四通阀将冷却液的电池与电机回路相通,构成了新的循环回路。电机开始运转之后,比较低温下PTC加热系统、电机余热分别对电池进行加热,与二者协同作用下电池温度的变化情况,发现PTC+驱动系统余热加热模式加热效率高,能量消耗少,因此,提出低温热管理方法,通过冷却液循环系统利用PTC加热系统与电机产生的热量对电池进行加热或保温。为弥补纯电动汽车单一能源的不足,以上热管理方法的能量来源于蓄电池-超级电容混合储能系统,保证电动汽车蓄电池的电量不会因热管理系统的消耗而大打折扣。  相似文献   

7.
<正>一、改进型N63发动机1.冷却系统E72的N63发动机也采用两个彼此独立的冷却循环回路。其中一个用于发动机冷却,另一个用于增压空气冷却。车辆还有第三个用于高电压蓄电池的冷却循环回路,由于它并不属于发动机部分,因此具体介绍参见相关章节。  相似文献   

8.
<正>本文描述了一系列参与CO_2减排潜力的不同技术。其中,最为重要的参数是降低每单位CO_2的额外增加成本:得到参数最低值的技术必须认真考虑,并刻不容缓地推向市场。(上接NO.41 P48~51)安排在两个温度水平的双冷却回路的潜力见图10和图11,图10中显示这两个回路的温度稳定性;低温回路不用任何的恒温控制阀进行稳定。对于预热时间的作用见图11。双回路冷却的另—个特性是可以在第二个回路中装入A/C冷凝器。在传统的系统中,冷凝器由周围空  相似文献   

9.
运用金相、透射、拉伸测量等测试手段分析了快冷温度和卷曲温度对C-Si-Mn-Cr系热轧双相钢的组织结构和力学性能的影响。结果表明,实验钢最佳冷却工艺为终轧后空冷到730℃,然后水冷至250℃卷取。该工艺下,可以得到抗拉强度为650 MPa,延伸率为24.6%,屈强比为0.8的铁素体+马氏体热轧双相钢。  相似文献   

10.
正2.高压蓄电池的热量管理必须对高压蓄电池进行调节,以便以最佳方式利用其性能容量。高压蓄电池设计用于-30~50℃的工作范围。低于-30℃时,高压蓄电池允许的电流限制为0A。此时将不再能够激活车辆的驱动系统。从55℃开始,高压蓄电池的电流以线性方式降低到60℃的极限。高于60℃时,将断开电源接触器,或者如果车辆准备好运行,则接触器不闭合。  相似文献   

11.
某乘用车AGM蓄电池开发过程中,经过整车台架试验,发现在某环境下电解液温度达到81℃,超过其温度限值75℃。通过Fluent 13.0仿真分析软件和整车对比试验,对增加电池隔热保护套、在蓄电池前增加导流板和增加前端格栅开口面积的3种优化方案进行对比分析和验证。结果表明,增加前端隔栅开口面积的方案最佳,可使电池电解液温度降低到75℃以下。  相似文献   

12.
<正>车型:配置272发动机。行驶里程:80000km。故障现象:客户反映在路边停放一会儿后,出现无法启动的现象,于是拖回店里维修。故障诊断:此车为混合动力汽车,其发动机的工作原理与一般车型不同,首先简单介绍一下工作原理(如图1所示)。混合动力驱动系统包括混合动力发动机,集成式启动机-发电机,电力电子控制模块,带蓄电池管理系统控制模块和DC/DC转换器控制模块的高电压系统。混合动力驱动系统的主要功能有:混合动力驱动系统的能量管理,混合动力驱动系统的能量协调,自动启动停止功能,再生制动功能,高压电蓄电池冷却,电力电子冷却功能。蓄电池管理系统控制模块集成在高压蓄电池模块  相似文献   

13.
(接上期)五、君越冷却系统电路分析1.100℃时冷却风扇低速运转(图9)冷却液温度达到100℃时,发动机控制模块通过低速冷却风扇继电器控制电路为低速风扇继电器提供接地通路。这时风扇1继电器线圈通电,继电器触点闭合,并通过冷却风扇电动机供电电路向左冷却风扇提供蓄电池正极电压。左冷却风扇的接地通路经过风扇2继电器与右冷却风扇形成一个串联电路,使得两个风扇都处于低速运转状态。  相似文献   

14.
正(1)充电时间可实现的充电时间取决于以下几个因素:使用的充电设备各个电源连接的功率电源电压的波动可能设置的充电电流限制(仅限于保时捷交流通用充电器)环境温度高压锂离子蓄电池的温度乘客舱空调预启动功能是否开启高压锂离子蓄电池的剩余电量锂离子蓄电池的物理特性决定了充电过程是非线性的。随着剩余电量增加,蓄电池潜在的电流吸收会减小。这意味着蓄电池充电进度看上去比剩余电量增加的进度要慢。  相似文献   

15.
现代车辆大多数都装有蓄电池电源总开关,本文在分析现有电源总开关的基础上,介绍一种新型电源总开关,它是在目前广泛使用的蓄电池继电器上,加一机械锁止装置,只是在接通和切断蓄电池电源回路的短时间内激磁线圈通电,而在车辆整个工作过程中激磁线圈不再带电,达到安全节能的目的。  相似文献   

16.
故障现象 一辆桑塔纳轿车在检修完空调系统,加足制冷剂后,冷却风扇一直高速运转,关闭空调后需等很长时间才能停下来。断开熔断丝,风扇停止转动,若插上熔断丝重新开启空调制冷开关,风扇又会转动不停。故障分析 该车冷却风扇由双速直流电机驱动,当冷却液温度高于95 ℃时,温控开关的低温开关合上,通过熔断器后使风扇电机的低速端接通电源,风扇便以低速(1600 r/min)运转。当冷却液温度高于105 ℃时,温控开关的高温开关合上,电源接通风扇电机的高速端接线,冷却风扇便会以高速(2400r/min)运转,达到冷却降温的目的。当打开空调制冷开关时,空调继电器接通,电源接通风扇的低速接线端,风扇低速运转。当空调高压开关在压力高于1500kPa时合上,冷却风扇继电器接通,风扇电机便以高速运转,达到使冷凝器充分冷凝、降温的目的。其电路原理如图1所示。该车冷却风扇高速运转不停的原因可能是:(1)温控开关(包括高、低温开关)中的高温开关损坏,使电源长时间呈接通状态,风扇便长转不停。(2)冷却风扇继电器损坏,由于继电器损坏,使触点不能断开。是否属于此故障,只要拔掉空调高压开关,观察风扇是否停转便知。(3)风扇电机本身有故障。检测排除 ...  相似文献   

17.
<正>(接2019年第3期)6.蓄电池电量控制模块(BECM)蓄电池电量控制模块(BECM)是电动车(EV)蓄电池的组成部分。如图14所示,蓄电池电量控制模块(BECM)位于BEM模块的下部,安装在BEM安装板上。BECM监控以下内容:(1)EV蓄电池模块蓄电池单元的电压;(2)内部EV蓄电池模块的温度;(3)高压(HV)互锁回路;(4)蓄电池电量模块(BEM)中不同点的高压直流(DC)电压;(5)BEM中的HVDCBEM电流传感器;(6)冷却液进口和出口连接中的EV蓄电池冷却液温度传  相似文献   

18.
基于现有纯电动汽车电机冷却原理及存在问题,本文提出一种新型电机冷却系统、冷却控制方法和冷却控制系统。该电机冷却系统将冷却泵、温控单元与电机本体集成在一起,具有不同的循环冷却回路,可简化并缩短整车冷却管路、节约前机舱空间、提高电机冷却效率,满足电机在不同工况下的精准冷却控制要求。  相似文献   

19.
正八、高压蓄电池SE16高压蓄电池用于吸收、存储和提供电能,以供电驱动装置和高压车载网络使用。高压蓄电池单元由多个电池单元模块组装而成,每个电池单元模块分别带有多个单格电池。电池单元模块相互串联在一起。通过外部电网以及制动能量回收,可以为高压蓄电池单元充电。1.概览高压蓄电池SE16是全新研发的产物,并且是首款第5.0代高压蓄电池单元。通过冷却液对锂离子高压蓄电池单元进行调温。使用冷却液的优点在于,冷却液不仅可以用于冷却,还可以用于加热高压蓄电池单元。在高压蓄电池SE16上,粘贴了3张标牌:1个铭牌和2张警示牌。铭牌上提供了关于高压蓄电池单元的具体信息(包括零件号码、系列号、装配号码等)以及最重要的技术数据(例如额定电压、容量等)。  相似文献   

20.
<正>故障现象一辆2018款宝马i3车,累计行驶里程约为2.7万km。车主反映,车辆无法行驶,故障出现时车辆并未涉水。故障诊断接车后首先试车,发现车辆无法进入行驶准备(Ready)状态,所以无法行驶,放置一段时间后,偶尔又可以正常行驶。举升车辆检查底盘,高压动力电池外壳无事故刮伤痕迹。使用故障检测仪检测,蓄能器管理电子装置(SME)中存储有多个故障代码(图1),其中故障代码“0x21F106高压蓄电池,电池监控电子装置(CSC)4:电池单元模块的温度测量,测量值不可信”“0x21F117高压蓄电池,CSC4:温度传感器,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号