首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《JSAE Review》2002,23(4):407-414
Fuel properties play a dominant role in the spray, mixture formation and combustion process, and are a key to emission control and efficiency optimization. This paper deals with the influence of the fuel properties on the spray and combustion characteristics in a high-pressure and temperature chamber. Light diesel fuel spray and combustion images were taken by using a high-speed video camera and analyzed by their penetration and evaporation characteristics in comparison with current diesel fuel. Then, a single-cylinder DI engine was used to investigate combustion and exhaust characteristics. The mixture formation of the light diesel fuel is faster than that of the current fuel depending on physical properties like boiling point, density, viscosity and surface tension. Engine test results show that smoke is reduced without an increase in other emissions.  相似文献   

2.
The soot morphological study and NOx emissions of soybean oil methyl ester (SME) in a passenger diesel vehicle were investigated experimentally. The soot morphological characteristics were conducted at various injection pressures, engine speeds and engine loads. Soot sampling and image processing analysis with a scanning electron microscope (SEM) were used to investigate the influence on particulate morphologies. The dimensions of average primary particles and the size of the radius of gyration were gradually decreased as injection pressures increased at all operating engine conditions. The average radius of gyration was increased with increasing engine load, while the average primary particle size decreased. NOx emissions were gradually increased with the increasing injection pressure at all operating engine conditions.  相似文献   

3.
This work experimentally investigates how the dwell time between pilot injection and main injection influences combustion and emissions characteristics (NOx, CO, THC and smoke) in a single-cylinder DI diesel engine. The experiments were conducted using two fuel injection systems according to the fuel type, diesel or dimethyl ether (DME), due to the different fuel characteristics. The injection strategy is accomplished by varying the dwell time (10°CA, 16°CA and 22°CA) between injections at five main injection timings (?4°CA aTDC, ?2°CA aTDC, 0°CA aTDC, 2°CA aTDC and 4°CA aTDC). Results from pilot-main injection conditions are compared with those shown in single injection conditions to better demonstrate the potential of pilot injection. It was found that pilot injection is highly effective for lowering heat-release rates with smooth pressure traces regardless of the fuel type. Pilot injection also offers high potential to maintain or increase the BMEP; even the combustion-timing is retarded to suppress the NOx emission formation. Overall, NOx emission formation was suppressed more by the combustion phasing retard effect, and not the pilot injection effect considered in this study. Comparison of the emissions for different fuel types shows that CO and HC emissions have low values below 100 ppm for DME operation in both single injection and pilot-main injection. However, NOx emission is slightly higher in the earlier main injection timings (?4°CA aTDC, ?2°CA aTDC) than diesel injections. Pilot injection was found to be more effective with DME for reducing the amount of NOx emission with combustion retardation, which indicates a level of NOx emission similar to that of diesel. Although the diesel pilot-main injection conditions show higher smoke emission than single-injection condition, DME has little smoke emission regardless of injection strategy.  相似文献   

4.
用光学可视化方法研究乙醇柴油混合燃料的燃烧特征   总被引:2,自引:0,他引:2  
应用直接图像法对乙醇柴油的燃烧过程进行研究。在一台单缸直接喷射式柴油机上,建立了直接图像法拍摄燃烧火焰图像的光学系统,对15%乙醇柴油、15%乙醇柴油加十六烷值改进剂、纯柴油在同一转速下的燃烧过程进行可视化研究。对火焰照片分析表明:柴油中加入乙醇后,无论是否恢复其十六烷值,其着火滞燃期都延长了,燃烧持续期缩短,火焰辉度减弱。在乙醇柴油中加入十六烷值改进剂后,着火滞燃期相对提前,燃烧持续期和火焰辉度增加,但仍然没有达到柴油机水平,这说明十六烷值改进剂有利于改善乙醇柴油的燃烧性能。通过温度场分析发现:乙醇柴油的缸内平均温度峰值要比纯柴油低很多,而且乙醇柴油燃烧时平均温度上升相当平缓。  相似文献   

5.
改善柴油机排放的核心是对燃烧过程进行优化,通过改善燃烧过程来降低柴油机排放是当前柴油机研究中的重要课题。本文主要从优化进气系统、优化喷油系统、优化燃烧室结构、燃料的改质及优化润滑系统五个方面进行分析,综合这些相互制约的优化措施优化柴油机的燃烧过程,降低颗粒物质PM和NOx的直接排放。  相似文献   

6.
《JSAE Review》1995,16(1):27-33
The influence of fuel properties on combustion characteristics and exhaust emissions in a direct injection stratified charge SI engine with a “two-stage fuel injection system” was examined. The results showed that this type of DISC combustion system can be used with a wider range of fuels than ordinary homogeneous combustion systems. Lower exhaust emissions and higher thermal efficiency were achieved even with fuels with lower octane numbers and higher distillation temperatures.  相似文献   

7.
The effects of the Abrasive Flow Machining (AFM) process on a direct injection (DI) Diesel engine fuel injector nozzle are studied. Geometry characterization techniques were developed to measure the microscopic variations inside the nozzle before and after the process. This paper also provides empirically-based correlations of the nozzle geometry changes due to the AFM process. The resulting impact of the process on the engine performance and emissions are also assessed with a DI Diesel engine test setup. This study shows that properly AFM-processed injectors can enhance engine performance and improve emissions due to the improved quality of the nozzle characteristics. However, an extended process can also cause enlargement of the nozzle hole as a side effect, which can adversely affect emissions. Emission measurements show the trade-off for the minimum levels as the process proceeds. Since the enlargement of the hole during the AFM process is not avoidable and must be minimized, strict control over the process is required. This control can be enforced by either limiting the AFM processing period, or by properly preparing the initial hole diameter so as to accommodate the inevitable changes in the nozzle geometry.  相似文献   

8.
9.
In this paper, the transient conditions during fast startup are investigated to develop a fuel metering strategy under HEV-like mode. The fuel mixture preparation and its effects on the combustion are analyzed in detail. Specifically, the combustion in the first cycle is characterized under both conventional low-speed cranking startup and HEV-like fast startup modes. The test results show that the enhancement of cranking speed has marginal effects on mixture preparation in the first cycle. However, it prolongs the combustion duration and reduces HC emissions. The sensitivity of the fuel metering is evaluated for the initial cycles. The combustion in the 3rd ~ 5th cycles during startup is found to be fairly sensitive to the fuel metering due to the effects of transient fuel film vaporization. The fuel metering in the first cycle has the most significant effect on the combustion and emissions during fast startup. Optimized fuel metering in the first cycle shows effective reduction of HC emissions during fast startup process.  相似文献   

10.
This paper deals with the main physical-chemical properties of ethanol-diesel blend and the effects of ethanoldiesel blends (up to 15% volume) on engine performance (full load torque vs. engine speed, BSEC vs. torque at 1400 r/min and 2300 r/min, and effect of start of injection angle) and emissions in ECE R49 tests (steady 13 points) using a 6.6 L inline 6-cylinder turbocharged direct injection diesel engine. The results show that an increase in ethanol fraction results in decreased viscosity of the blend fuel and very high distillation characteristics in the low temperature range. Solvents can improve the solubility of ethanol-diesel blends. The engine power was degraded proportional to the ethanol content (10% and 15%) due to the LHV (low heating value) of the blends. The higher latent heat of vaporization and lower CN (cetane number) of ethanol, which results from the steady state emissions of CO, HC, and SOF (soluble organic fraction), were much higher in the ECE R49 tests at low loads. Soot (solid mass) emissions were improved. The particulate matter emissions were significantly increased with higher blend volumes, and NOx emissions slightly increased with higher ethanol volumes. By increasing the injection angle properly, the performance parameters of the diesel engine were improved, but NOx emissions were deteriorated slightly.  相似文献   

11.
The first firing cycle is very important during cold-start for all types of spark ignition engines. In addition, the combustion characteristics of the first firing cycle affect combustion and emissions in the following cycles. However, the first-cycle fuel-air mixing, combustion and emissions generation within the cylinder of a two-stage direct-injection (TSDI) engine during cold start is not completely understood. Based on the total stoichiometric air-fuel ratio and local richer mixture startup strategy, the first-cycle firing and combustion characteristic at cold start were investigated in a two-stage direct injection (TSDI) gasoline engine. In addition, the effects of the first injection timing, second injection timing, 1st and 2nd fuel injection proportion and total excess air ratio on the in-cylinder pressure, heat release rate and accumulated heat release were analyzed on the basis of a cycle-by-cycle analysis. It is shown that a larger 2nd fuel injection amount and later 2nd injection timing are more beneficial to the firing of the first cycle in the case of a total excess air ratio of 1.0. The optimum 1st and 2nd injection timing fuel injection proportions are 120°CA ATDC during the intake stroke, 60°CA BTDC during the compression stroke and 1:1. In addition, the firing boundary is a 2nd injection timing later than 90°CA BTDC during the compression stroke in the case of the 1st injection timing from 60°CA to 180°CA ATDC during an intake stroke and involves a 1st and 2nd fuel injection proportion of 1:1 and an excess air ratio of 1.0. The study provides a detailed understanding of cold-start combustion characteristics and a guide for optimizing the reliable first-cycle firing at cold start.  相似文献   

12.
In this research, the effects of three operating parameters (Diesel injection timing, propane ratio, and exhaust gas recirculation (EGR) rates) in a diesel-propane dual fuel combustion were investigated. The characteristics of dual-fuel combustion were analyzed by engine parameters, such as emission levels (Nitrogen oxides (NOx) and particulate matter (PM)), gross indicated thermal efficiency (GIE) and gross IMEP Coefficient of Variance (CoV). Based on the results, improving operating strategies of the four main operating points were conducted for dual-fuel PCCI combustion with restrictions on the emissions and the maximum pressure rise rate. The NOx emission was restricted to below 0.21 g/kWh in terms of the indicated specific NOx (ISNOx), PM was restricted to under 0.2 FSN, and the maximum pressure rise rate (MPRR) was restricted to 10 bar/deg. Dual-fuel PCI combustion can be available with low NOx, PM emission and the maximum pressure rise rate in relatively low load condition. However, exceeding of PM and MPRR regulation was occurred in high load condition, therefore, design of optimal piston shape for early diesel injection and modification of hardware optimizing for dual-fuel combustion should be taken into consideration.  相似文献   

13.
Particulate matter in diesel engine exhaust, particularly nano-particles, can cause serious human health problems including diseases such as lung cancer. Because diesel nano-particle issues are of global concern, regulations on particulate matter emissions specify that not only the weight of particulate matter emitted but also the concentration of nanoparticles must be controlled. This study aimed to determine the effects on nano-particle and PM emissions from a diesel engine when applying a urea-SCR system for NOx reduction. We found that PM weight increases by approximately 90% when urea is injected in ND-13 mode over the emission without urea injection. Additionally, PM weight increases as the NH3/NOx mole ratio is increased at 250 °C. In SEM scans of the collected PM, spherical particles were observed during urea injection, with sizes of approximately 200 nm to 1 μm. This study was designed to determine the conditions under which nano-particles and PM are formed in a urea-SCR system and to relate these conditions to particle size and shape via a quantitative analysis in ND-13 mode.  相似文献   

14.
A low-cost solution based on fuel injection strategies was investigated to optimize the combustion process in a boosted port fuel injection spark ignition (PFI SI) engine. The goal was to reduce the fuel consumption and pollutant emissions while maintaining performance. The effect of fuel injection was analyzed for the closed and open valve conditions, and the multiple injection strategies (MIS) based on double and triple fuel injection in the open-valve condition. The tests were performed on an optical accessible single-cylinder PFI SI engine equipped with an external boost device. The engine was operated at full load and with a stoichiometric ratio equivalent to that of commercial gasolines. Optical techniques based on 2D-digital imaging were used to follow the flame propagation from the flame kernel to late combustion phase. In particular, the diffusion-controlled flames near the valves and cylinder walls, due to fuel deposition, were studied. In these conditions, the presence of soot was measured by two-color pyrometry, and correlated with engine parameters and exhaust emissions measured by conventional methods. The open valve fuel injection strategies demonstrated better combustion process efficiency than the closed ones. They provided very low soot levels in the combustion chamber and engine exhaust, and a reduction in specific fuel consumption. The multiple injection strategies proved to be the best solution in terms of performance, soot concentration, and fuel consumption.  相似文献   

15.
《JSAE Review》1998,19(4):311-317
We have investigated combustion characteristics of lean gasoline–air pre-mixture ignited by diesel fuel injection using a high compression direct injection diesel engine. Gasoline was supplied as a uniform lean mixture by using carburetors, and diesel fuel was directly injected into the cylinder. It was confirmed that the lean mixture of air–fuel ratio between 150 and 35 could be ignited and burned by this ignition method. As the diesel fuel injection increased, HC concentration decreased, and NO and CO concentration increased. The exhaust gas emission of pollutants could be reduced when lean mixture was ignited by an optimum diesel fuel injection.  相似文献   

16.
Recent studies on dual-fuel combustion in compression-ignition (CI) engines, also known as diesel engines, fall into two categories. In the first category are studies focused on the addition of small amounts of gaseous fuel to CI engines. In these studies, gaseous fuel is regarded as a secondary fuel and diesel fuel is regarded as the main fuel for combustion. The objectives of these studies typically involve reducing particulate matter (PM) emissions by using gaseous fuel as a partial substitution for diesel fuel. However, the addition of gaseous fuel raises the combustion temperature, which increases emissions of nitrogen oxides (NOx). In the second category are studies focused on reactivity-controlled compression-ignition (RCCI) combustion. RCCI combustion can be implemented by early diesel injection with a large amount of low-reactivity fuel such as gasoline or gaseous fuel. Although RCCI combustion promises lower NOx and PM emissions and higher thermal efficiency than conventional diesel combustion, it requires a higher intake pressure (usually more than 1.7 bars) to maintain a lean fuel mixture. Therefore, in this study, practical applications of dual-fuel combustion with a low air-fuel ratio (AFR), which implies a low intake pressure, were systemically evaluated using propane in a diesel engine. The characteristics of dualfuel combustion for high and low AFRs were first evaluated. The proportion of propane used for four different operating conditions was then increased to decrease emissions and to identify the optimal condition for dual-fuel combustion. Although the four operating conditions differ, the AFR was maintained at 20 (? approximately equal to 0.72) and the 50% mass fraction burned (MFB 50) was also fixed. The results show that dual-fuel combustion can reduce NOx and PM emissions in comparison to conventional diesel combustion.  相似文献   

17.
从石油类液体、烃类气体、醇醚类、新型液体等燃料的应用分析了车用燃料的发展动向,从进气方式、喷油系统、涡轮增压、排气后处理、混合动力方面分析了柴油机技术的发展动向,并展望了未来几年的发展。  相似文献   

18.
Recently, to reduce environmental pollution and the waste of limited energy resources, there is an increasing requirement for higher engine efficiency and lower levels of harmful emissions. A premixed charge compression ignition (PCCI) engine, which uses a 2-stage type injection, has drawn attention because this combustion system can simultaneously reduce the amount of NOx and PM exhausted from diesel engines. It is well known that the fuel injection timing and the spray angle in a PCCI engine affect the mixture formation and the combustion. To acquire two optimal injection timings, the combustion and emission characteristics of the PCCI engine were analyzed with various injection conditions. The flame visualization was performed to validate the result obtained from the engine test. This study reveals that the optimum injection timings are BTDC 60° for the first injection and ATDC 5° for the second injection. In addition, the injection ratio of 3 to 7 showed the best NOx and PM emission results.  相似文献   

19.
The objective of this work was to investigate the effects of injection conditions and swirl on D.I. diesel combustion using a transparent engine system. The test engine is equipped with a common rail injection system to control injection conditions and to obtain split injection characteristics. A combustion analysis and steady flow test were conducted to measure the heat release rate due to cylinder pressure and the swirl ratio. In addition, spray and diffusion flame images were obtained using a high speed camera. The LII & LIS methods were also used to obtain 2-D soot and droplet distributions. High injection pressure was found to shorten ignition delay, as well as to enhance peak pressure. The results also revealed that the heat release rate in the premixed combustion region was markedly reduced through the use of pilot injection, while the soot distribution and the heat release rate in the diffusion combustion region were increased. The swirl effect was found to shorten ignition delay at certain injection timings, and to enhance the heat release rate in all experimental conditions.  相似文献   

20.
《JSAE Review》1998,19(4):319-327
This study aimed to reduce NOx and soot by creating a more homogeneous lean fuel distribution in a diesel spray using high-pressure fuel injection and a micro-hole nozzle. This injection system shortened the ignition delay, but a homogeneous lean fuel distribution in the diesel spray was not achieved. Using a lower cetane number fuel, the resulting longer ignition delay made a uniform, lean fuel distribution in the diesel spray possible with this injection system. Ignition and combustion were analyzed by the combustion chamber pressure history, and flame temperatures and KL values were analyzed by the two-color method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号