首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对正交异性钢桥面板的弧形切口进行疲劳修复时,切割孔形的优劣决定了疲劳修复效果。以检查到较多弧形切口疲劳病害的钢桥面板为研究对象,采用有限元和结构力流法分析了弧形切口处应力集中的原因。结合4种修复方案对切割孔形的圆弧半径、直线长度和倾角进行参数优化,得到了切割孔形对峰值应力的影响规律。依托钢桥面板弧形切口疲劳裂纹切割、修复工程,选择切割前、后的弧形切口开展试验研究。采用试验车进行纵向和横向移动加载,测试了2片横隔板弧形切口断面和侧面的应力分布规律和轮载位置-应力变化关系,并采用修正名义应力法近似评估其疲劳寿命。研究结果表明:轮载产生的力流通过U肋以剪应力的形式传递给横隔板,力流扩散中遇到弧形切口的阻碍,导致切口处力流高度密集;弧形切口开孔尺寸宜小,开孔半径宜大,避免阻碍力流传递路径;弧形切口优化后,其峰值应力降低58.4%,考虑横向概率分布的等效应力降低55.2%;因增大弧形切口的开孔而削弱截面面积,导致横隔板的平均压应力稍有增大;基于有限元计算和试验测试的峰值应力进行疲劳寿命预测,修复前的疲劳寿命分别为3.8年和7.2年,修复后的寿命分别为58.5年和184.4年,说明此切割修复方法具有良好的加固效果。  相似文献   

2.
针对压-压循环可不验算疲劳、横隔板弧形切口母材疲劳为面外反复变形所致、《公路钢结构桥梁设计规范》(JTG D64—2015)(以下简称《公路钢桥规》)疲劳损伤效应系数取值等认知或规定,以及服役背景工程横隔板弧形切口处补强细节尺寸的确定,通过服役背景工程的疲劳细节、交通载荷与病害特征等信息汇集,服役背景工程多种补强方案、新建背景工程等轮载有限元分析与多规范疲劳验算比较,力求揭示横隔板弧形切口母材疲劳开裂机理,确定其合理的补强细节。研究结果表明:横隔板弧形切口处母材的轮载应力主要为膜压应力,轮载压应力幅耗费横隔板母材疲劳寿命;《公路钢桥规》疲劳损伤效应系数取值或许偏大;弧形切口形状对横隔板与U肋连接处及横隔板母材轮载应力及其峰值影响较大,弧形切口半径不能太小,且其与U肋交点的切线与U肋腹板的夹角宜取小值;横隔板母材裂纹较短者(优化后,裂纹自然切除)可采用"弧形切口优化"的处治方案,较长者可采用"止裂孔+弧形切口优化+双面补强钢板"的处治方案;补强钢板对补强以外稍远部位应力影响可忽略,补强钢板尺寸可统一,其边缘距顶板可取65mm,已覆盖裂纹全长,其边缘距U肋宜取30mm,太近会导致横隔板与U肋连接焊缝处应力增大,其厚度宜取4mm,过厚将在补强钢板边缘处母材上形成新的疲劳敏感点。  相似文献   

3.
为了解正交异性钢桥面板横隔板与U肋焊接处残余应力分布特征,明确横隔板弧形切口疲劳开裂机理,采用热-结构耦合方法建立横隔板-U肋焊接连接的热弹塑性有限元模型,通过"生死单元"技术模拟焊缝的填充过程,得到焊接温度场与应力场,分析横隔板焊缝和弧形切口处残余应力的分布规律。结果表明:横隔板焊趾处纵向残余应力为拉应力,峰值为345 MPa,横向残余应力在焊缝开始位置和尾部区域为拉应力,在焊缝中间应力水平较低;横隔板弧形切口附近残余应力变化剧烈,且沿切口弧线长度和钢板厚度分布不均匀;从切口顶点到起弧点位置,残余应力从压应力变化为拉应力,起弧点处应力峰值为231 MPa;焊接引起的焊缝尾部高水平残余应力是导致横隔板弧形切口疲劳开裂的关键因素。  相似文献   

4.
纵肋与横隔板连接是控制钢桥面板耐久性的关键构造细节,其在轮载作用下应力传递复杂,构造设计不当极易引起疲劳裂纹。目前常规式纵肋与横隔板连接在运营过程中可能发生的疲劳裂纹形式有横隔板弧形开孔裂纹、焊缝端部横隔板裂纹、焊缝端部纵肋水平裂纹或竖向裂纹,针对常规式连接的不足,设计上进一步提出内肋式和无缝式2种构造类型。采用有限元方法,以纵肋与横隔板连接可能出现裂纹的4类细节为对象,基于应力影响面分析,讨论了车辆轮载移动对各细节局部受力的影响,研究了常规式、内肋式和无缝式3种构造类型的疲劳损伤特征。结果表明:轮载作用下4类细节的局部效应非常显著,纵向影响区域约在3道横隔板之间,横向影响区域约在2个纵肋范围;考虑轮迹横向概率分布,各细节应力幅横向折减系数在0.94~0.97范围内。常规式连接弧形开孔细节应力幅最大,主要受面内变形控制,纵肋壁板水平细节次之,表现出明显的面外弯曲特性。与常规式连接相比,内肋式连接纵肋壁板水平细节和竖向细节最大应力幅分别降低28%和29%,减缓了纵肋在焊缝端部的应力集中程度。无缝式连接可能的疲劳破坏形式减少为横隔板焊趾开裂和纵肋壁板焊趾开裂2类,分析发现这2类细节均主要处于受压状态。常规式连接疲劳寿命预估为41.2年,纵肋壁板出现水平裂纹导致疲劳破坏的可能性较大;内肋式连接疲劳寿命由横隔板弧形开孔细节控制,较常规式连接提高58%;无缝式连接疲劳寿命预估为85.3年,较常规式和内肋式连接分别提高107%和31%,且两细节寿命相近,从全寿命设计角度考虑该构造更为合理。  相似文献   

5.
现场监测能真实反映结构的构造细节、边界约束和桥面加载条件,是正交异性钢桥面板疲劳评价最合理有效的方法之一。基于某正交异性桥面板钢箱梁桥,通过监测随机车流下同一车道紧邻的2个横隔板上疲劳敏感构造细节的应力响应时程,对比2种不同弧形切口正交异性钢桥面板构造细节的应力响应;通过雨流计数法获取构造细节应力谱,再基于米勒线性累积损伤准则计算疲劳等效应力幅和等效加载次数;最后基于AASHTO LRFD规范条文计算相关构造细节的疲劳寿命。研究结果表明:横隔板弧形切口构造细节总应力是面内应力分量主导,小弧形切口峰值应力时面外应力对总应力的比不大于23%,而大弧形切口仅略减小到20%,但大弧形切口削弱了横隔板腹板,使得传递面内竖向应力的面积减小,反而增大了弧形切口构造细节的应力,因而大弧形切口构造细节的疲劳寿命仅为10.6年,低于小弧形切口的14.2年;对纵肋-横隔板(Rib-to-floorbeam,RF)焊缝构造细节而言,大弧形切口减轻了RF之间的相互约束,能一定程度减小RF纵肋侧和RF横隔板侧的应力响应;但增大了RF围焊处因弯曲产生的压应力,从而导致横向泊松效应在该构造细节处产生大的二次应力;采用小弧形切口时估计的纵肋-横隔板焊缝构造细节的疲劳寿命大于100年,而采用大弧形切口对应寿命仅为31年。研究结果可为正交异性钢桥面板抗疲劳设计和加固提供有益的参考。  相似文献   

6.
为研究钢箱梁正交异性桥面板横隔板与U肋交接处的残余应力分布规律,采用Abaqus有限元软件模拟横隔板的热切割和焊接过程,分析横隔板与U肋交接处热残余应力的分布特征,探讨切割速度和焊接速度对横隔板弧形切口处残余应力的影响。结果表明:横隔板弧形切口处产生切向残余拉应力,其值超过钢材屈服强度;焊接在横隔板与U肋焊接区局部范围引起沿焊缝方向的残余拉应力,且焊缝尾端的应力集中更为明显;弧形切口残余应力区宽度随切割速度的增加而减小,残余拉应力随焊接速度的增加而增大;选用较快的横隔板切割速度和较慢的焊接速度可减小弧形切口处残余应力分布宽度和应力值。  相似文献   

7.
横隔板弧形切口处疲劳开裂是钢箱梁的主要疲劳病害之一,为提高该细节的疲劳性能,确定其合理构造形式,以某悬索桥(加劲梁采用钢箱梁)为背景,建立钢箱梁节段有限元模型进行疲劳应力分析,基于P-M线性积伤律和Eurocode 3提供的S~N曲线计算其疲劳寿命,比较6种国内外常用弧形切口的疲劳性能,并分析切口半径和横隔板厚度对疲劳应力的影响。结果表明:轮载作用下横隔板弧形切口处存在明显的拉、压应力集中区;疲劳裂纹萌生于压应力集中区,裂纹扩展方向与主压应力方向基本垂直;弧形切口的形式显著影响其疲劳性能,国内外典型孔型中,圆弧+直线方案(孔型4)为刚性横隔板弧形切口的最佳孔型;适当增加孔型4的切口半径和横隔板厚度有利于提高其疲劳寿命,增加切口半径较增加板厚效果更好。  相似文献   

8.
新型UHPC—大纵肋波折板正交异性桥面板取消了顶板与纵肋焊缝,减少了横隔板与纵肋焊缝,为改善正交异性钢桥面板控制部位的疲劳性能提供了一个有效新途径。然而,由于波折板与横隔板保留横向焊缝,其疲劳风险仍然可能存在,故针对纵肋与横隔板位置的关键疲劳细节,采用数值分析并结合热点应力法对各参数影响下的轮载应力幅和疲劳寿命进行评估验证。结果表明,新型组合桥面板的大纵肋波折钢板及横隔板的疲劳寿命主要受弧形切口顶应力幅控制,施工时应加强切口打磨质量,防止疲劳开裂。另外,UHPC板厚增大、横隔板间距减小以及横隔板厚度加大时,各疲劳细节应力幅均有减小趋势,但加大纵肋高度或填充混凝土补强纵肋后,其各疲劳细节应力幅增减趋势并不一致。通过合理参数设计可使得各疲劳细节应力幅趋势均匀,获得优异的抗疲劳性能。  相似文献   

9.
本文选取U肋与桥面板连接区域、U肋与横隔板交叉部位、U肋等细节,通过实桥静力试验,结合有限元模型分析,研究正交异性钢桥面板局部应力的大小和分布规律.结果表明:钢桥面板各关键构造细节的应力影响线都比较短,纵向应力主要受两个横隔板间距的影响,横向应力受与其相邻的两个U肋间距内荷载的影响;当车辆通过时,测点会出现多个应力循环;在U肋-横隔板连接焊缝附近,U肋腹板上的应力水平较高;横隔板弧形切口自由边缘两侧应力性质相反,一侧受压、一侧受拉,应力幅值较大,存在疲劳开裂隐患;因此设计中应该对构造细节进行详细研究分析,并注意焊接区域的细部设计与制造,避免疲劳开裂.  相似文献   

10.
周维  于浩楠 《城市道桥与防洪》2021,(11):189-191,202
为系统探究纵肋与横隔板交叉细节的疲劳特性,以某斜拉桥钢桥面板为研究背景,利用ANSYS有限元软件,对2跨3纵肋节段疲劳模型进行了数值模拟.研究结果表明:当疲劳车轮载单侧前后轮中心线通过横隔板正上方时,纵肋与横隔板交叉细节的疲劳应力幅达到最大;在欧规疲劳车荷载下,围焊焊趾处疲劳应力幅为83.6 MPa,横隔板开孔圆弧线上的最大疲劳应力幅为120.2 MPa.  相似文献   

11.
为研究货运繁重公路上某正交异性钢桥面弧形切口开裂现象,基于动态称重系统(WIM)得到了疲劳车模型,并建立了钢箱梁节段模型和桥面板子模型,开展了该钢桥弧形切口应力响应分析和疲劳寿命评估。研究表明:横隔板弧形切口的应力局部效应非常明显,其横桥向应力影响线长度在2个纵肋范围左右,纵桥向应力影响线长度在2个横隔板范围左右;弧形切口仅能分辨轴组,而不能分辨轴组内单轴,因而1辆疲劳车加载可以在弧形切口产生2个大应力幅,分别对应中间双联轴和后面的三联轴;弧形切口在最小净截面处存在显著应力集中,周围存在明显的应力梯度,越靠近弧形切口边缘,应力梯度越明显,其最大主应力方向与实桥开裂形态相符;面内应力显著主导弧形切口应力响应,横隔板存在一定的面外变形,适当增加横隔板的厚度,可有效降低弧形切口应力水平;考虑轮载横桥向分布,纵肋R18和R19之间的弧形切口疲劳寿命为6~13年,这与实桥弧形切口疲劳开裂时间和位置均比较吻合;货车通行比例高、通行量大和超载严重是导致该桥过早出现疲劳开裂的主要原因;提出的实测疲劳车模型能为货运繁重公路上的钢桥,特别是正交异性钢桥面板疲劳设计和评价提供重要的参考。  相似文献   

12.
为研究钢桥面板疲劳裂纹耦合扩展机理,建立焊接分析有限元模型,对纵肋-顶板连接细节、纵肋-横隔板连接细节的焊接全过程进行数值模拟,基于扩展有限元方法建立钢桥面板数值断裂力学模型,对疲劳敏感细节裂纹静、动态扩展行为进行分析。焊接过程分析结果表明:纵肋-顶板连接焊缝区域、纵肋-横隔板焊缝端部区域均存在较大的残余拉应力,峰值接近钢材屈服强度;横隔板挖孔边缘存在切向残余拉应力,峰值约为200 MPa。疲劳裂纹扩展行为分析结果表明:纵肋-顶板连接细节在车辆荷载单独作用下以受压为主,考虑残余应力场作用后细节处于拉-拉应力状态,疲劳裂纹为Ⅰ型主导的Ⅰ-Ⅱ-Ⅲ型复合裂纹;车辆偏载作用下纵肋产生扭转变形,计入残余应力后纵肋-横隔板连接焊缝焊趾受拉开裂,萌生于纵肋焊趾、向纵肋腹板扩展的疲劳裂纹为Ⅰ型主导的Ⅰ-Ⅱ-Ⅲ型复合裂纹,萌生于纵肋-横隔板连接焊缝横隔板侧焊趾和横隔板挖孔边缘的疲劳裂纹为Ⅰ-Ⅱ型复合裂纹;纵肋对接细节的疲劳裂纹为Ⅰ型裂纹,车辆荷载作用下以受拉为主,位于纵肋底板弧形过渡区的裂纹相较于纵肋底板中间区域具备更强的扩展能力。  相似文献   

13.
黄鹤  秦攀 《中外公路》2022,(3):109-114
对某正交异性板钢桁结合梁的3处构造细节制作了试件,通过静载试验的方式、疲劳试验循环加载和有限元方法相结合研究了它们的疲劳性能。结果表明:桥面板焊接码板疲劳起裂位置在中间部位,裂纹从内部开始扩展,说明此处焊缝较薄弱,其原因在于中间码板部位横截面积较小,在循环荷载的作用下,持续承受较大的拉应力,从而引起构件开裂;U肋与横隔板及桥面板焊接构造最薄弱的部位是U肋与桥面板的焊缝,在疲劳试验中此处最先断裂;桥面板与横隔板及U肋交叉焊缝构造疲劳裂缝由焊趾起裂,然后斜向扩展,主要原因是外荷载作用下焊趾处的横向及竖向应力均较大,在两个方向力的共同作用下,容易产生斜向裂缝。这些由试验验证的薄弱部位应在疲劳设计中引起重视。  相似文献   

14.
为评估正交异性钢桥面板的疲劳寿命,给维修和设计提供参考,以某连续钢箱梁桥(设置高1.8 m的横隔板与净高0.9 m的横肋)为背景进行研究.采用ANSYS子模型技术建立了钢箱梁节段模型,基于热点应力法对横隔板与横肋弧形切口起始处和弧形切口自由边两处疲劳细节进行了寿命预测,并就两处细节疲劳性能对弧形切口型式和板厚变化的敏感...  相似文献   

15.
为研究弯扭条件下正交异性钢桥面板的疲劳性能,根据某实际桥梁图纸制作了6个足尺试件模型,模型由盖板、U肋和横隔板3部分组成,模型间各部分通过焊接连接。首先,采用有限元软件ANSYS对试件受力情况进行数值模拟,获得静力荷载作用下试件的内力分布,确定疲劳试验所要加载的疲劳荷载大小以及要观测热点应力的位置。然后,对6个盖板-U肋-横隔板试件进行高周疲劳加载,观察并记录了试验过程中试件开裂位置、试件的裂缝发展情况和试件开裂过程中竖向位移的变化,分析了复杂应力下桥面板疲劳裂缝扩展、刚度退化和疲劳寿命等。结果表明:弯扭条件下盖板-U肋-横隔板焊接连接试件疲劳开裂出现在焊缝焊趾处,且盖板上靠近U肋处裂缝扩展路线呈弧形;弯扭条件下裂纹扩展可大致分为裂纹萌生阶段、稳定扩展阶段、贯穿板厚阶段和疲劳断裂阶段;加载前期试件刚度退化不明显,接近疲劳破坏时刚度大幅下降,并建立了盖板-U肋-横隔板连接节点竖向位移变化值与疲劳特性参数之间的大致关系;裂缝扩展阶段疲劳寿命较短,其他3个阶段寿命大致相同;给出了测点热点应力突变和肉眼可见裂缝两种准则下的S-N曲线,试验所得盖板-横隔板焊接连接细节疲劳强度均高于国际焊接协会标准IIW和欧洲规范3推荐的FAT 90,FAT 100,FAT 112以及FAT 125的细节疲劳强度。  相似文献   

16.
根据国内外钢箱梁的设计经验,选取3种不同的横隔板设置形式,通过有限元方法建立钢箱梁的空间有限元模型,计算横隔板与U肋相交的桥面板、U形加劲肋的对接处、横隔板过焊孔处等4种构造细节在车轮荷栽作用下的应力幅,得出横隔板设置形式对桥面板疲劳应力幅的影响.  相似文献   

17.
为解决正交异性钢桥面纵肋-横隔板接头疲劳开裂问题,根据正交异性钢桥面构造特点,提出了一种疲劳性能良好的新型无切口正交异性钢-UHPC组合桥面,能简化制造工艺,提高经济性能。基于ANSYS数值分析平台建立双尺度有限元模型,采用欧洲规范疲劳荷载模型III开展纵桥向移动加载,获得了纵肋-横隔板接头在3种典型横向位置下的轮载热点应力响应曲线。结合轮载作用下的应力云图和变形图,揭示了构造细节力学机理,评估了疲劳性能,并探讨了构造参数的影响。应力响应曲线表明:纵肋-横隔板接头在轮载作用下的应力响应以受压为主,局部效应显著,纵桥向应力影响线短,因而可根据轮载应力响应曲线识别轴组中的单轴。应力云图和变形图表明:构造细节在轮载作用下出现了显著应力集中,因新型桥面横隔板截面削弱较小,横隔板侧应力梯度小于纵肋侧。纵肋-横隔板接头应力最大点均不在纵肋正底部位置,而是与纵肋中心线成一定角度。由于纵肋-横隔板接头与面板距离较大,UHPC层和面板厚度对其疲劳性能改善并不明显。增加横隔板厚度能减小横隔板侧应力幅,但会增加纵肋侧应力幅,横隔板厚度可取10 mm。增大纵肋腹部厚度可有效减小纵肋侧应力幅,16 mm的纵肋腹部厚度可使得纵肋-横隔板接头实现无限疲劳寿命。  相似文献   

18.
为了研究横隔板变形对曲线钢箱梁桥焊缝细节疲劳应力的影响,以某三跨连续钢箱梁高架桥为背景,建立正常横隔板和变形横隔板的钢箱梁模型,针对横隔板分别与U肋、腹板加劲肋、底板开口肋连接焊缝3处细节,研究横隔板变形对各细节应力影响面和最不利工况下应力状态的影响,对比面内、外应力对各细节疲劳损伤的贡献。结果表明:横隔板变形对横隔板-腹板加劲肋细节和横隔板-底板开口肋细节应力影响范围和最不利位置影响显著,并且会导致各疲劳细节的拉应力和压应力有较大增幅,相对于正常横隔板而言更容易产生疲劳损伤;横隔板变形会导致各细节面外应力占比增大,促使面外应力成为各连接焊缝疲劳损伤的主要因素。  相似文献   

19.
采用有限元方法对我国常用的实腹式横隔板扁平钢箱梁钢桥面板结构进行了应力分析,研究了U肋-横隔板连接接头疲劳裂纹的产生机理及主要影响因素,并对几种常见的横隔板弧形切口形状及内肋式构造、底部固定式构造等新型构造的效果进行了比较.研究表明,传统构造4和新型内肋式构造21的受力性能较为理想,但普遍适用于不同疲劳裂纹形式、加载条件、横梁高度、制造工艺的最优构造形式并不存在,需要采用基于性能的方法进行U肋-横隔板连接接头疲劳设计.  相似文献   

20.
针对某斜拉桥钢箱梁纵向U肋与横隔板槽口两边间隙不一的问题,根据U肋槽口间隙焊缝间隙的大小制订3种处治方案;考虑到槽口改变对近处轮载应力影响较大,利用ABAQUS建立空间实体有限元模型,分析了在轮载效应下3种处治方案的弧形切口位置处及横隔板切割处的应力分布状况。结果表明,按处治方案进行槽口整改,对整改区域附近横隔板轮载应力的影响稍大,且使主拉应力有所减少(减少约10%),对稍远处轮载应力的影响较小(小于1%),对疲劳寿命的影响可忽略不计;横隔板整改切割线处的应力水平较低(小于10 MPa),且垂直于切割线方向的正应力大部分为压应力,该处焊缝的疲劳强度满足规范要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号