首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
郧县汉江大桥为(86+414+86)m地锚式预应力混凝土斜拉桥,每塔两侧各布置2×25根斜拉索。检测发现:斜拉索索力和设计理论状态误差较大,PE护套损伤,钢丝锈蚀严重,斜拉索系统属于四类部件。为确保桥梁结构的长期安全,结合该桥斜拉索体系病害情况,运用等强度换算原理,设计新斜拉索[采用镀锌平行钢丝、PES(HD)低应力全防腐索体、全防水结构等多项技术],替换全桥旧斜拉索。斜拉索更换顺序为病害斜拉索优先,单塔对称、双塔反对称,由长索到短索的原则进行更换。有限元结果表明,在整个换索过程中,斜拉索、主梁和桥塔结构变形、应力和强度验算均能满足规范要求。换索施工工序为旧索放张→旧索拆除→新索安装与张拉→索力调整。通过优化施工工艺,长索单塔换完后,2个点4根索同时更换,将换索工期降低到120d,极大地缩短了施工工期。  相似文献   

2.
跨中无轴力铰作为在地锚式斜拉桥中使用的新技术,其受力非常复杂,为确保该结构在换索过程中处于安全状态,以地锚式混凝土斜拉桥——郧县汉江大桥的换索及维修工程为背景,采用有限元软件Abaqus建立无轴力铰实体模型,在Midas/Civil全桥模型的基础上,考虑换索时的实际工况,分析换索过程中无轴力铰受力性能以及安全性。结果表明:整个换索过程中无轴力铰结构都处于安全状态,但温度的作用对跨中无轴力铰结构受力的影响不容忽视。  相似文献   

3.
地锚式万向铰独斜塔斜拉桥结构体系新颖,为分析温度荷载作用下该类桥梁成桥状态的结构响应,以三亚海棠湾河心岛景观桥(主跨99.8 m钢斜塔双边工字钢梁独塔斜拉桥)为工程背景,建立桥梁结构有限元模型,分析体系温差、日照温差、索梁(塔)温差对桥塔偏位、主梁线形以及索力的影响.结果表明:体系温差下桥塔以纵向弯曲和纵向偏转为主,体...  相似文献   

4.
根据平行钢丝索的特点以及制作、安装施工工艺,结合斜拉索施工过程中加扭、退扭现象,分析了斜拉索加扭或退扭现象产生的原因和危害,提出施工防治措施及后续平行钢丝斜拉索制作、施工建议.  相似文献   

5.
钢主塔无背索斜拉桥是新颖的桥梁结构形式,主要景观桥梁之一,国内外对该类型的施工工艺可参考的资料较少,作者参与了施工全过程并对施工过程中钢主塔安装施工工艺、钢主梁安装工艺、斜拉索安装工艺进行了总结。桥梁施工过程中主塔采用起重力矩11700kN·m的塔吊进行吊装施工,主梁采用120t龙门吊进行吊装施工并用321桁架片做支架。该工艺在施工过程中得到了验证,对节约施工成本,加快施工进度,提高施工质量有很好的指导作用。  相似文献   

6.
以武汉西四环汉江特大桥为研究对象,利用ANSYS有限元软件建立斜拉桥空间动力学分析模型,分析二期恒载变化、拉索损伤和拉索断裂等结构因素变化对大跨度斜拉桥动力特性的影响。结果表明,二期恒载的变化和少数拉索的断裂对大跨度斜拉桥动力特性的影响很小,但拉索损伤会导致大跨度斜拉桥振动频率发生较显著变化,其中拉索有效面积的变化对斜拉桥动力特性的影响最显著。  相似文献   

7.
对某主跨114m竖琴式无背索斜拉桥进行了关键参数分析,从优化索塔受力的角度推导了索塔合理重量取值,分析了主梁刚度和重量、索塔刚度和重量以及索力共5种因素对结构内力的影响规律,从优化结构内力及斜拉索用料最省2个方面分别对索塔和斜拉索倾角进行了分析,得出的结论对同类桥型的设计有一定的参考价值。  相似文献   

8.
无背索竖琴式斜拉桥合理结构体系分析   总被引:1,自引:0,他引:1  
从无背索斜拉桥不同于常规的斜拉桥的受力特点出发,比较了无背索斜拉桥与常规直塔斜拉桥的力学行为差异.以长沙市洪山大桥--单索面竖琴式斜塔斜拉桥为工程背景,结合收集到的国内外目前已建和在建无背索斜拉桥的相关资料,参照Alamillo桥和其他同类桥型的相关资料,根据塔、梁、索的布置形式对其进行分类,并详细分析了各种类型的受力特性,为无背索斜拉桥的结构设计提供参考.  相似文献   

9.
以长沙市洪山大桥为工程背景,对洪山桥换索或断索进行了理论计算分析.采用频率法弦振理论简化计算索力的公式对洪山桥斜拉索在挂索期间的索力进行了测试和计算,根据测试及计算结果详细地分析了无背索竖琴式斜拉桥索力的变异性和敏感性.  相似文献   

10.
2009年12月14日,公司人力资源部举办了题为“斜拉桥知识”的培训。本次培训由副总工程师、路桥分公司总工程师何海主讲,内容围绕斜拉桥体系、斜拉桥的总体布置、斜拉索的布置、索塔的型式、索塔(无背索斜拉桥)、斜拉索的类型等几个方面。  相似文献   

11.
通化西昌斜拉桥为独塔单索面预应力混凝土斜拉桥,桥长300 m,其主梁标准段采用牵索挂篮施工,主塔空间极小,斜拉索施工采取软硬牵引结合的方法。介绍了该桥斜拉索的挂设方法和施工工艺,供同类工程参考。  相似文献   

12.
李扬  马骉  王浩  王巍  程斌 《世界桥梁》2021,49(2):13-17
上海泖港大桥老桥为(85+200-85)m双塔双索面预应力混凝土斜拉桥,采用塔梁固结、塔墩分离的结构体系.随着航道等级提升,该桥桥下净空无法满足通航需求,且原结构损伤较为严重,对其进行拆除.考虑紧邻新建主桥、老桥斜拉索损伤等不利影响,提出一套以“先上后下、逆序拆除”为原则的拆除方案,依次对桥面系、主梁、斜拉索、桥塔和下...  相似文献   

13.
沈阳市富民桥主桥是一座89 m+242 m+89 m的混凝土折线塔斜拉桥,为确定合理的成桥索力,采用最小弯曲能量法并结合假载法和内力平衡法进行计算分析。根据静力平衡条件得到主梁初始断面尺寸;利用最小弯曲能量法得到主梁和桥塔弯矩较小、索力基本均匀的成桥恒载合理状态;利用假载法进行验算,以保证各控制断面在最不利荷载组合时的弯矩值在规范允许范围内。研究表明,折线塔斜拉桥成桥索力确定可采用与直线塔相同的方法;索力距离桥塔由近至远呈现由大到小、再由小至大的分布规律,中跨索力大于边跨索力;两塔相应位置索力大小不同。  相似文献   

14.
为研究斜拉桥实测索力计算转换公式的适用性,以常用的频率-索力计算方法弦振动分析理论为基础,列举工程中常用的实测索力计算公式及分析理论,分析以实测频率为单一变量,采用不同简化公式计算乌苏斜拉桥(2×140m独柱塔单索面钢箱梁斜拉桥)和邹城斜拉桥(2×110m独塔双柱式双索面混凝土梁斜拉桥)实测索力的差异,并在四方台斜拉桥(双塔三跨钢箱梁斜拉桥)上进行验证。研究结果表明,中、小跨径钢箱梁斜拉桥应用斜拉索两端简支直梁理论进行实测索力换算的精度更高;中、小跨径混凝土斜拉桥应用斜拉索两端固结直梁理论进行实测索力换算的精度更高;当索长在90~100m范围以上时均应对计算索长进行修正后再计算索力。  相似文献   

15.
介绍单索面斜拉桥——乌江二桥对斜拉索力在主梁上传递的结构处理手法,本设计通过总结以往工程实例的成功经验,再经过多方面的分析比较,提出新的结构处理方式,解决了结构受力、施工难度、外观等多方面的问题。  相似文献   

16.
针对斜拉桥建模过程中斜拉索内力与设计成桥索力存在偏差的问题,为确定斜拉索合理的初始张拉力,提出基于影响矩阵法的斜拉索合理初始张拉力计算方法.该方法根据斜拉索张拉过程中其两端的位移和索力协调关系,构建一种影响矩阵,通过该矩阵计算斜拉索的合理初始张拉力.以某大跨度独塔斜拉桥为例,采用该方法计算斜拉索合理初始张拉力,并对比分...  相似文献   

17.
沪通长江大桥主航道桥主跨1 092m,斜拉索采用双塔三索面、扇形密索体系,最长索长576.2m,最大索重83.5t,超长、超重斜拉索安装难度大。斜拉索采用先塔端挂设,再梁端牵引,最后塔端张拉的总体施工方案。短、中索采用常规的先塔端挂设后脱空展索的方式施工,长索采用斜拉索桥面整体运输及展索技术,按照先桥面展索后塔端挂设的步骤施工。短索采用卷扬机牵引系统完成斜拉索梁端牵引。中、长索采用梁端卷扬机快速牵引技术,加大卷扬机牵引力,将梁端锚杯向锚固位置牵引一段距离。中索、中跨长索梁端作业空间有限,采用钢绞线软牵引系统和梁端反压牵引技术完成梁端牵引;边跨长索采用常规的钢绞线软牵引系统完成梁端牵引。斜拉索张拉时,采用防扭转装置。为加快施工进度,29号墩斜拉索采用同步智能张拉系统,同步完成2层共12根斜拉索张拉。  相似文献   

18.
嘉绍大桥主航道桥为(70+200+5×428+200+70)m六塔七跨分幅式钢箱梁斜拉桥。为确保其顺利合龙,结合该桥六塔独柱(桥塔为弱柱结构)并设置竖向双排支座体系和跨中刚性铰等结构特点,按照结构运营状态达到设计理想状态为施工控制目标,采用有限元软件建立实体模型,对关键控制工况分别进行仿真分析,对其合龙工艺、合龙顺序进行研究。研究确定该桥按照无应力状态几何控制法进行顶推合龙施工的方案,7个合龙口按照边跨→中跨→次边跨→次中跨的合龙顺序进行逐次合龙,并对合龙过程中的顶推施工工艺、关键施工参数确定、主要控制手段及实施控制要点进行了阐述。实践证明,该合龙方案和合龙顺序高效、高精度地完成了该桥的顶推合龙施工。  相似文献   

19.
港珠澳大桥青州航道桥为双塔双索面钢箱梁斜拉桥,该桥设计采用了多项新材料、新技术、新工艺,对其工程特点及关键技术进行总结.该桥充分利用相邻非通航孔桥相同结构类型的钢箱梁进行配重,外边跨不设置斜拉索,因地制宜,综合优势明显;结构支承体系采用三向支承体系,保证全桥结构性能最优;桥塔采用“中国结”造型的钢剪刀撑,与混凝土塔柱采用“承压-传剪”复合传力模式的连接箱连接,性能安全可靠;基础采用变直径钢管复合桩,钢管与钢筋混凝土组成组合截面共同受力,经济合理;桥墩墩身采用节段预制、现场安装的方案,节段连接采用φ75 mm的预应力粗钢筋;钢箱梁采用优化的扁平流线型断面和正交异性钢桥面板,抗疲劳性能优越;斜拉索采用抗拉强度为1 860 MPa的平行钢丝索.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号