首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work describes an enhanced mooring optimization procedure, oriented towards recent floating production systems (FPS) for oil & gas exploitation in ultra-deep-water scenarios, which may present a large number of risers in an asymmetric layout. Acknowledging that the risers are the key component of an FPS, the optimization procedure is associated to an integrated mooring-riser design methodology; thus, instead of simply minimizing the platform offsets and/or the costs of the mooring system itself, one of the main objectives is to obtain a mooring configuration that ensures the integrity of the risers. Other highlights of the optimization procedure include the following aspects: Enhancements in the modeling of the optimization problem (including the definition of design variables, objective function and constraints that are relevant for such actual applications); The use of the PSO optimization algorithm associated to the ε-constrained method to efficiently handle the constraints; Enhancements in the evaluation of candidate solutions, by full nonlinear time-domain dynamic Finite Element simulations with coupled models; and the implementation in a parallel computing environment to deal with the high associated computational costs. A case study considering an FPS representative of actual applications in deepwater scenarios is presented to illustrate the practical application of the optimization tool.  相似文献   

2.
The subsea survey results using remote operating vehicles (ROV) show that trenches with a depth of several riser diameters can be developed underneath the steel catenary risers (SCR). Therefore, an important question in respect of the riser–seabed interaction is, how the trench formation beneath the riser affects the riser fatigue performance in the touchdown zone. A common methodology reported in literature to study the impact of trench formation on riser fatigue life is the insertion of an artificial mathematical expression of the riser profile into the seabed. This study shows that such methodology can be inconsistent and leading to contradictory results. The current paper has employed ABAQUS finite element software and coded a non-linear soil hysteretic model to automatically simulate the variable seabed stiffness and the gradual trench development through the touchdown zone. In this method, the seabed model parameters are initially adjusted to extreme values allowing trench with desired depth to be developed over a moderate number of displacement cycles of the SCR. The design wave scatter diagram is then applied, simulating a generic Spar system, after switching the model parameters to values with normal range. The paper presents the impact of trenches of different depths on the fatigue performance of SCRs in the touchdown zone.  相似文献   

3.
海洋工程深水开发浮式系统的耦合计算方法   总被引:6,自引:0,他引:6  
当前海洋深水开发所用的浮式平台系统多为浮式船体与柔性系泊系统及立管系统的耦合体,这样,浮式船体与柔性系统之间必将有相互影响及相互作用.由于其整体系统的非线性及动力学特性,势必要求对深水浮式平台系统进行有效的时域耦合分析计算.本文首先简要介绍时域耦合分析的具体问题及解决方法,然后介绍作者近年来开发的HARP(Hull And Riser Program)耦合计算程序.  相似文献   

4.
由于浮式平台升沉运动的影响,导致立管在水平方向上发生参激振动。参激振动可以引起立管平衡位置的不稳定性,此外,参激振动与涡激振动联合作用会改变立管振动响应特性,加剧立管疲劳破坏。为对深海立管参激振动进行深入研究,通过总结国内外立管参激振动研究的主要成果,介绍了立管参激振动的主要特点和动力学模型,归纳了深海立管参激振动研究的主要方向,并就研究中较为薄弱的一些环节,提出了一些建议。  相似文献   

5.
深水钻井隔水管耦合系统分析(英文)   总被引:1,自引:0,他引:1  
对于深水系泊钻井系统而言,移动式海洋钻井装置与细长结构(系缆、钻井隔水管)之间的耦合效应在预测浮体运动及钻井隔水管响应时起决定性作用.文中建立了深水系泊钻井系统的全耦合有限元模型,考虑波频与低频环境载荷,对系统进行了非线性时域分析.分析表明,由低频浮体运动激励的低频隔水管动态响应可对深水钻井隔水管设计产生重要影响.常规方法将低频浮体运动作为准静态效应考虑,对于连接在锚泊钻井装置上的深水钻井隔水管而言是不精确的.  相似文献   

6.
本文应用水弹性理论研究单点系泊系统立管的强度问题。讨论了有固定强迫漂移运动的立管水弹性计算方法,提出了适用于深海多节铰支立管计算公式,并编成计算程序,对 SALS 系统立管进行了计算检验。  相似文献   

7.
The real-time monitoring of underwater risers, cables, and mooring lines by multiple sensors is in great demand but still very challenging. In this study, a new real-time riser monitoring method based on an Extended Kalman Filter (EKF) is proposed. It estimates the overall shape of riser in real-time utilizing the measured signals from multiple bi-axial (inclination and heading) inclinometers along the riser. The novel EKF algorithm is shown to be robust against sensor noises and successfully reproduces the actual riser profiles at each time step, which has been verified by multiple tests through numerical simulations. For verification, a turret-moored FPSO (Floating Production Storage and Offloading) with a SCR (Steel Catenary Riser) is employed in four different random waves and currents. Subsequent algorithms are also developed so that the corresponding bending and axial stresses along the riser can also be estimated in real time from the obtained riser shape, which can further be used for the real-time estimation of fatigue-damage accumulation.  相似文献   

8.
赵婧  郭海燕 《船舶力学》2016,20(5):530-539
文章采用计算流体力学(CFD)方法,结合SST k-棕湍流模型,对低质量比柱体进行两自由度涡激振动数值模拟,得到了柱体升力、曳力系数的时程曲线,并观察了柱体进入锁振状态的幅值变化,研究了不同截面形式柱体在外流速处于0.1-1.0 m/s范围内的振动响应。将圆柱体在不同流速下两向振动的CFD数值模拟与实验数据进行比较,得到了较为满意的结果。通过分析不同截面柱体在不同外流速下的振动幅值发现,带有抑振装置的柱体截面形式能够有效地减小涡激振动,其中,板状截面柱体抑振效果较好。  相似文献   

9.
钢悬链线立管作为一种全新的深水立管系统已经在国外多个项目中应用,总结了有关深水钢悬链线立管触地区域管土相互作用的研究进展,主要包括STRIDE和CAluSIMA工业合作计划的研究数据和其他的相关论文,能够为国内深水钢悬链线立管的研究提供参考.  相似文献   

10.
This paper addresses the need for systematic evaluation of the station keeping systems of deepwater drilling semi-submersibles. Based on the selected drilling semi-submersible configuration, the mooring systems were analyzed and designed for a range of water depths using different mooring line materials. These were steel wire rope, polyester rope and HMPE (high modulus poly ethylene). The mooring analysis was carried out using the advanced fully coupled time domain analysis method in the computer software package HARP. Diffraction analysis was first applied to solve the hydrodynamic properties of the vessel and then the motion equations of the complete dynamic system including the drilling rig, the mooring lines and risers were developed and solved in the time domain. Applying the advanced analysis method, a matrix of mooring systems was developed for operating in water depths of 1 000 m, 1 500 m, and 2 000 m using various mooring materials. The development of mooring systems was conducted in accordance with the commonly adopted mooring design code, API RP 2SK and API RP 2SM. Fresh attempts were then made to comparatively evaluate the mooring system’s characteristics and global performance. Useful results have been obtained in terms of mooring materials, water depths, and key parameters of mooring configurations. The results provide in-depth insight for the design and operation of deepwater mooring systems in the South China Sea environment.  相似文献   

11.
A mathematical model employed to analyze the global dynamics of a Steel Catenary Riser (SCR) taking into account the interaction with the seafloor and the effect of the soil reaction forces is established. The choice of soil model plays an important role for the dynamic behavior of SCRs. The riser has been modeled using flexible beam with large curvature and elastic foundation beam to describe the riser-soil interaction by means of realistic nonlinear load-deflection (Py) curves. The study is made to improve an existing finite element numerical code for dynamic analysis of mooring lines and risers, known as CABLE 3D, which is based on a slender rod assumption. Effects of nonlinear seabed model on the dynamic behavior of SCRs under vessel cyclic perturbation have further been investigated and discussed using a realistic Py curve to simulate soil deformation and resistance forces. The interaction model depends on several factors, such as soil strength, penetration depth and riser characteristics. The dynamic responses of the riser Touchdown Point (TDP) excited by vessel periodic heave motion are studied and the results are compared with those from the linear spring model. SCR has been perturbed by 10 regular sinusoidal cycles and the responses calculated by improved code show a number of features such as suction force mobilization, gradual increasing penetration depth, and gradual reduction of soil resistance at maximum penetration. The riser behavior at the touchdown zone (TDZ) depends on the riser top motion amplitude, nonlinear soil stiffness and suction force. The impact of the riser-soil interaction model on the dynamic behavior in the TDZ has been thoroughly studied in this paper.  相似文献   

12.
实际工程中深海立管常以管群的方式出现,当立管彼此相互靠近时,会发生流场干涉效应。为研究立管间相互干涉作用及螺旋侧板抑制双立管涡激振动的效果,本文基于Ansys Workbench平台,采用双向流固耦合技术对Re=7800均匀来流下长径比为482的串列双立管进行三维数值模拟。结果表明,立管轴间距为5D时立管间有完整的涡旋脱落,下游立管在上游立管的尾流诱导下产生振动,双立管横向振动锁定在二阶模态,且振动方向相反。附加螺旋侧板能有效削弱双立管振动频率,降低上游立管横向振动幅值,但下游立管两向位移响应变化不大。  相似文献   

13.
Flexible risers and steel catenary risers often provide unique riser solutions for today’s deepwater field development. Accurate analysis of these slender structures, in which there are high-speed HP/HT internal flows, is critical to ensure personnel and asset safety. In this study, a special global coordinate-based FEM rod model was adopted to identify and quantify the effects of internal flow and hydrostatic pressure on both flexible and deepwater steel catenary risers, with emphasis on the latter. By incorporating internal flow induced forces into the model, it was found that the internal flow contributes a new term to the effective tension expression. For flexible risers in shallow water, internal flow and hydrostatic pressure made virtually no change to effective tension by merely altering the riser wall tension. In deep water the internal pressure wielded a dominant role in governing the riser effective tension and furthering the static configuration, while the effect of inflow velocity was negligible. With respect to the riser seabed interaction, both the seabed support and friction effect were considered, with the former modeled by a nonlinear quadratic spring, allowing for a consistent derivation of the tangent stiffness matrix. The presented application examples show that the nonlinear quadratic spring is, when using the catenary solution as an initial static profile, an efficient way to model the quasi-Winkler-type elastic seabed foundation in this finite element scheme.  相似文献   

14.
孟彦鑫  付世晓 《船舶工程》2020,42(3):128-134
在靠近海底井口位置,隔水管周围流场受井口系统的影响发生变化,流固耦合下涡激振动可能诱发隔水管在横流向(CF方向)更为剧烈的振动。为了研究受管土装置影响的隔水管涡激振动响应特性,使用自主设计的管土装置模拟海底井口,采用8 m柔性立管,进行了均匀流下单管和受管土装置影响的涡激振动对比试验。试验通过FBG光纤应变片测得应变信息,使用模态叠加法、FFT变换处理分析试验数据,对比分析2组隔水管的主导频率、应变时历与幅值谱、无因次振幅以及激励力系数等参数沿管径的分布情况。结果发现管土装置影响下,隔水管主导频率减小;CF方向涡激振动增大,振幅沿径向呈非对称特征;涡激振动振幅更大,隔水管受流场的激励与阻尼更为剧烈。  相似文献   

15.
TLP立管系统以丛式方阵排列,台风条件下立管在波浪、海流及平台的联合作用下可能发生碰撞,有必要深入研究TLP串行立管系统的碰撞情况。文章基于DNV-RP-F203规范和Huse半经验尾流模型,提出台风条件下串行立管下游立管来流速度计算方法和立管系统碰撞分析方法,建立串行立管—井口—导管系统耦合有限元模型,研究台风条件下串行生产立管系统碰撞时的力学特性,在整体碰撞分析的基础上进行立管局部碰撞精细化分析,对比分析立管局部碰撞理论解和仿真解的不同。结果表明:下游立管来流速度的计算至少采用文中建立的方法迭代3次。串行立管发生碰撞时的最大应力发生在泥面导管处,碰撞位置应力发生了突变;立管发生碰撞的位置在水深100-120 m范围内。立管局部碰撞分析的理论解和仿真解基本吻合。  相似文献   

16.
This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.  相似文献   

17.
Standard design procedures and simulation tools for marine structures are aimed primarily for use by the offshore oil and gas. Mooring system restoring forces acting on floating offshore structures are obtained from a quasi-static mooring model alone or from a coupled analysis based on potential flow solvers that do not always consider nonlinear mooring-induced restoring forces, fluid structure interactions, and associated hydrodynamic damping effects. This paper presents the validation of a dynamic mooring system analysis technique that couples the dynamic mooring model with a Reynolds-averaged Navier-Stokes (RANS) equations solver. We coupled a dynamic mooring model with a RANS equations solver, and analyzed a moored floating buoy in calm water, regular and irregular waves and validated our motion and mooring force predictions against experimental measurements. The mooring system consisted of three catenary chains. The analyzed response comprised decaying oscillating buoy motions, linear and quadratic damping characteristics, and tensile forces in mooring lines. The generally favorable comparison of predicted buoy motions and mooring forces to experimental data confirmed the reliability of our implemented coupling technique to predict system response. Additional comparative results from a potential flow solver demonstrated the benefits of the coupled dynamic mooring model with RANS equations. The successful validated tool of coupling the dynamic mooring model with the RANS solver is available as open source, and it shows the potential of the coupled methodology to be used for analyzing the moored offshore structures.  相似文献   

18.
Catenary risers have an interaction zone with the seabed, usually referenced as flowline. Movements in this region can be induced by sea currents and large offsets in floating unit, leading to touchdown position changes and affecting internal loads along riser length. In this work the contact flowline-seabed is modeled including sliding and rolling friction. Case studies involving large offsets in floating unit and lateral sea currents are solved to better understand the consequences of possible rolling and large sliding. The riser is modeled using a geometrically-exact finite element beam model. The contact is addressed with a new technique to include rotation movements from underlying beam models. This leads to global riser models including complex kinematics, being able to represent scenarios with alternating sliding/rolling and its consequences on internal loads of riser structure. A parametric study is performed to measure the influence of the friction coefficient in tension and torsion along typical flexible pipe and steel pipe catenary risers.  相似文献   

19.
In this paper a recently proposed formulation for the multilayered pipe beam element is extended to dynamic analysis of risers. Derivations of hydrostatic and hydrodynamic loadings due to internal and external fluid acting on each element layer are presented. Mass and damping matrices, associated to each element layer, are properly derived by adding their respective contributions to the expression of the virtual work due to external loading. The finite element implementation allows for the numerical representation of either bonded or unbonded multilayered risers, including small slip effects between layers. A number of numerical examples have been carried out and the results show the accuracy and efficiency of the new element formulation, even in large scale riser analysis. Moreover, we establish a few benchmarks using multilayered pipes and risers.  相似文献   

20.
With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy storage(OCAES) is a novel flexible-scale energy storage technology that is suitable for marine renewable energy storage in coastal cities, islands, offshore platforms, and offshore renewable energy farms. For deep-water applications, a marine riser is necessary for connecting floating platforms and subsea systems. Thus, the response characteristics of marine risers are of great importance for the stability and safety of the entire OCAES system. In this study, numerical models of two kinds of flexible risers, namely, catenary riser and lazy wave riser, are established in OrcaFlex software. The static and dynamic characteristics of the catenary and the lazy wave risers are analyzed under different environment conditions and internal pressure levels. A sensitivity analysis of the main parameters affecting the lazy wave riser is also conducted. Results show that the structure of the lazy wave riser is more complex than the catenary riser; nevertheless, the former presents better response performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号