首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
《城市道桥与防洪》2012,(4):I0001-I0016
ROADS & COMMUNICATION Selection of Lanzhou Baitashan Tunnel Line and Study of Connection Scheme Zhuang Haizhen, Li Bin (1) Abstract: The article introduces the characteristics of Lanzhou Baitahan Tunn...  相似文献   

2.
Aiming to solve the problems of collaborative management of intelligent tunnel and tunnel management under different traffic conditions, the tunnel is regarded as a part of highway, and five features of the intelligence are proposed from the definition of intelligence. In order to realize a collaborative management of intelligent highway tunnel, the spatial extent of tunnel is defined at first. Then, a collaborative management road topology based on road critical nodes is proposed; and a holographic collaborative control information system based on tunnel structure, facilities, vehicle, operation, management, and environment is established. Finally, collaborative control of people, cars, roads and environment could be realized, so as to improve the management level of the intelligent highway tunnels.  相似文献   

3.
The total length of the 2nd stage water transfer project in the northern area of Xinjiang of China is 540 km. The project consists of three tunnels, namely Xi Er (XE) Tunnel, Ka Shuang (KS) Tunnel and Shuang San (SS)〖HJ6.5mm〗 Tunnel, with lengths of 139.04 km, 283.27 km and 92.15 km respectively. All of these three tunnels have deep cover and are super long tunnels, and 95.6% of the total length of these three tunnels is constructed by TBMs. KS Tunnel is the longest water tunnel built or under construction in the world. In the paper, the trial TBM boring scheme and schedule of the water transfer project are introduced; the geological conditions revealed are statistically analyzed; and main project difficulties, i.e. durability of key equipment in long distance driving, passing through fault and fracture zones, water inrush, single head ventilation and transportation in long distance tunneling, anti slope drainage, and rock breaking efficiency and boring efficiency, are put forward. The adaptability of the TBMs used is analyzed from the aspects of adaptability to different surrounding rocks, adaptability to bad geological conditions and countermeasures, long distance ventilation and belt conveyor mucking and countermeasures, and TBM boring stability (such as equipment availability, boring time proportion, system malfunction and operation time). The following conclusions are obtained: (1) Accurate geological survey is the precondition of efficient tunneling. (2) The open type TBM can better adapt to Grade Ⅱ and Ⅲ of surrounding rocks, jointed and fractured zones and small faults; the adaptability of the TBMs used to the large scale fault fracture zones and water rich strata in this project is poor, and it needs to be improved in aspects of TBM equipment, supporting and construction technology. (3) The average availability of the TBM equipment in the trial boring stage is 89.9%, however, the malfunction rate of some ancillary equipment is high, particularly oil leakages occur to the main bearing seals; in order to achieve long distance tunneling, it is necessary to further improve the reliability and durability of the TBM equipment. (4) The average net boring efficiency in the trial boring stage is 296%, and TBM1 in Section Ⅱ of SS Tunnel achieves up to 45.2 % net boring efficiency; and highest monthly progress rate is 1 280 m, which created the highest record of the open type TBM boring in China. (5) TBM need to make great efforts to achieve 90% of the equipment system′s availability and over 40% of the tunneling efficiency.  相似文献   

4.
SUN Jun 《隧道建设》2018,38(11):1753-1764
The author discusses the necessity and urgency of constructing the Bohai Bay Crossing Corridor from the following aspects such as the increasing traffic volume, the convenience of the transportation after the corridor is constructed, and the regional benefit brought by the corridor. As for the timing of the construction of the sea crossing corridor, the author thinks that as long as the national economic situation permits and relevant conditions are basically available, the preliminary work should be carried out as soon as possible so as to promote the early commencement of the construction. Regarding the proposal of building another coastal national highway/high speed railway along the Bohai Bay coast, the author puts forward his viewpoints. In the aspect of construction risks, the author thinks that the geological risks in the construction of the Bohai Bay Crossing Corridor are very difficult to be dealt with; therefore, strict and detailed risk assessment should be carried out, and effective safety measures should be taken to mitigate the risks. The author also briefly describes the technological advantages of the tunnel proposal selected for the Bohai Bay Crossing Corridor, and briefly analyzes some key technological issues in the tunnel construction. The author describes the construction scheme and construction period estimation for the sea crossing corridor in details. The author makes the following proposal are given: (1)the hard rock tunnel boring machine (TBM) assisted by the drilling and blasting method should be used for the construction of the long sea crossing tunnel of Bohai Bay Crossing Corridor; (2) a parallel service tunnel shall be arranged between the twin main tunnel tubes; (3) in Proposal 2, the diameters of the twin main tunnel tubes and the service tunnel should be 8.0 m and 55 m, respectively. The proposal has two optional solutions: Solution 1: The service tunnel ( 55 m) located between the main tunnel tubes will be constructed first; for the main tunnel tubes, the disassembled TBMs ( 8 m) and the backup gantries are assembled for tunneling after arriving at the main tunnel tubes through the service tunnel and the cross passage; Solution 2 (alternative): Tunneling with  55 m TBM is carried out; the  55 m TBM will be dismantled to pass through the cross passage, and then be re assembled after arriving at the main tunnel; the start section (180 m) of main tunnel tube will be formed by  55 m TBM before it is enlarged to  8 m by drilling and blasting method; or the cross passage is enlarged to a large curved space to allow the 5.5 m TBM passing throught without disassembly. Comparison and contrast will be made and the preferred solution will be adopted. According to the rough estimation on the construction period of the 125 km long sea crossing tunnel, the total construction period of "completed tunnel" will be about 19 years (including 5 years of detailed offshore investigation) in Solution 1.  相似文献   

5.
In order to guarantee the stability of surrounding rock and support structure of super large span tunnel and realize quantification of support structure design, the optimal excavation contour line shape is obtained based on study of influence of initial ground stress on bearing arch of surrounding rock; a new quantitative design method, in which the surrounding rock is regarded as an arch structure, bolts, cables, shotcrete and lining are designed to satisfy the intensity, rigidity and stability of the arch structure, is presented to design the support structure system. The method has been successfully applied to super large span tunnel of Badaling Great Wall Station on Beijing Zhangjiajie High speed Railway; and the applicable results show that the maximum accumulative settlement of crown top of large span section is only 17.3 mm, and the relative subsidence of crown top is only 0.09%, which can meet safety requirements.  相似文献   

6.
XIAO Mingqing 《隧道建设》2018,38(3):360-371
In the 21st century, the underwater tunnels have advanced rapidly in China. A large number of projects, completed or ongoing, have greatly promoted the advancement of underwater shield tunnel technologies in China and in the world. The development history of the underwater tunnels in China is summarized, and the technical challenges and breakthroughs encountered and achieved during the construction of many tunnels are presented, as represented by Nanjing Yangtze River Tunnel and Shiziyang Tunnel of Guangzhou Shenzhen Hong Kong High speed Railway. The characteristics and challenges of some representative underwater tunnels during construction, including Road Railway Yangtze River Tunnel in Sanyang Road, Shiziyang Tunnel of Foshan Dongguan Intercity Railway, Yangtze River Tunnel of Suzhou Nantong UHV Power Transmission and Transformation Project; and projects to be constructed, such as Pearl River Estuary Tunnel of Shenzhen Maoming Railway, Shantou Bay Subsea Tunnel of Shantou Shanwei High speed Railway, and Nanjing Heyan Road Yangtze River Tunnel, are presented as well. The development trend of China′s underwater shield tunnels, including from single soft soil formation to complex soil formation, from large diameter to super large diameter, from medium water pressure to high and ultra high water pressure, from ordinary to special and unfavorable geological conditions, from seismic regions with moderate intensity to those with high intensity, and from single construction method to combination of multiple methods, are analyzed. It is pointed out that the technical fields still require further study and innovation, and the areas still require further enhancement and innovation, such as the norms, codes, designs, constructions, equipment, materials and management.  相似文献   

7.
Tsinghuayuan Tunnel of Beijing Zhangjiakou High speed Railway is the first fully prefabricated high speed railway tunnel in China. The supporting structure, subrail structure, and subsidiary structure of Tsinghuayuan Tunnel are all prefabricated in the factory. The strength, deformation and stability of subrail structure are analyzed by numerical simulation method; a kind of three block type of subrail prefabricated structure is put forward according to prefabricated assembling technology; and the subrail space is used to ventilate and rescue under the stability condition. The connection between subrail structure and shield segment is the key to fully prefabricated assembling technology. By introducing the grouting technology and construction keys of subrail structure, the stress on subrail structure and shield segment can be balanced. The results can provide reference for similar projects in the future.  相似文献   

8.
For recent ten years, the slurry shield tunnelling technology has been widely used in major underneath river/ocean tunnels and urban metro constructions in China. With the gradual maturity of the slurry shield technology, especially the large diameter slurry shield technology, the numbers of projects and shield machines have been among the highest in the world. However, great challenges arise during the construction of the slurry shield projects under complex geological conditions, such as the stability of the excavation face, cutting tool abrasion, opening the chamber and repairing the machine, slurry circulation with slag, and remanufacturing of the shield. Therefore, it is necessary to investigate the development of slurry shield construction technology in China. Based on typical cases of slurry shield projects, this study analysed the main problems of the slurry shield in the construction process and summarised the current experiences and key technologies. Considering the actual situation of the slurry shield technology, this study clarifies its development direction in China, which is significant to promote the development of the slurry shield technology in the world.  相似文献   

9.
A sea crossing tunnel is generally large in scale, having a complex site environment, and lack of engineering experience. The success of the project is directly related to the design plan. At present, no metro sea crossing tunnel havd been built in mainland, and the design standard and technology of the sea crossing tunnel are not studied throughly. The key technology of long and large sea crossing metro tunnel design, including construction method selection, cross section design, waterproofing and drainage system design, response to complex environment in sea area, durability design, ventilation and evacuation are analyzd with methods of geological analysis, engineering analogy and comprehensive comparison based on the sea crossing tunnel of Xiamen Rail Transit Line 3. A combination of shield and mining methods is proposed for the geological conditions of different sections. The drainage system of the mining section can be maintained by applying advanced grouting to control displacement. The complex geology of the sea area is considered in the targeted design, including a deep weathering trough, a water rich sand layer, a hard rock and uneven stratum, and the development of solitary rocks. The durability design of the tunnel structure and the limit of the bearing capacity are treated equally to consider safety reserve. The tunnel adopts sectioned longitudinal ventilation and smoke extraction mode, and contains ventilation shafts and civil smoke extraction air shafts on shore to prevent disasters. The conclusions can provide technical support for tunnel scheme decision and reference for similar projects.  相似文献   

10.
The GIL chamber in the utility tunnel under Tanxinpei Road in Wuhan is an ultra long closed structure. Heat exhaust ventilation is the controlling problem in engineering design for the project, especially the heat transfer between the tunnel and the surrounding soil in the long term. A one dimensional model for the GIL chamber is established by using the IDA tunnel simulation software to analyze the short term and long term heat exhaust, respectively. The short term heat exhaust is analyzed for the typical climate of summer/winter/transitional seasons and the long term analysis is carried out under the seasonal changes in 1 year/ 10 years/ 30 years. The short term analysis results indicate that the slope of the utility tunnel and the temperature gradient lead to lower ventilation efficiency in certain areas. The long term analysis results show that the air temperature in the GIL chamber and the wall temperature rise most pronouncedly during the first 5-6 years of operation and remain stable for the remaining time within 30 years. It also is found that around 10%-40% of the heat is released to the surrounding soil. A three dimensional model of the GIL chamber is established using the fluid mechanics based program, OpenFOAM, for 3D simulation. The effects of cables and brackets on the temperature and velocity fields in the chamber are analyzed. The effect of non uniformity of velocity distribution and the stack effect on the temperature distribution in the GIL chamber are revealed. The results can provide some reference for the design and specification revision of heat exhaust ventilation for similar utility tunnels in the future.  相似文献   

11.
In February, the auto production and sales amounted to 170,000 units, higher than the same period of last years. It was an important cause that most manufactures had a good production beginning. In February, 178,000 units of automobiles were produced, 26.73% up over last month. The accumulated production of February amounted to 319,600 units, rose by 27.20% up over the same period of last year. Because 'the China Automobile, Civil retrofitted vehicle, motorcycle manufactures and their production catalog' was emended, the above data included some new enterprises' production. Removed this factor, the accumulated  相似文献   

12.
Q: Auto Industry Bureau (AIB) of MMI has organized 3 international PSEs in 1994, 1995 and 1996 successively. Would you please give a comment to them? What influences would these PSEs impose to the development of China auto industry? Is AIB going to sponsor another PSE again next year? If yes, what will be the theme of that PSE?  相似文献   

13.
Editor's note: With a joint expectation of governments and common publics, China is speeding up to enter into the World Trade Organization and may be a member of WTO family soon. The concerns on the China's accession to WTO are what kinds of deep impacts will be brought on the China Auto Industry. Therefore, from now on, here's a series of articles collected to discuss that, covering whole auto industry, car industry, auto market, as well as after-market, etc. Meanwhile, I am grateful for any responses on this issue at your convenient time.  相似文献   

14.
The development and utilization of urban underground space is an important way to alleviate the shortage of urban resources, improve the environmental conditions and the quality of life of residents. It has important practical significance. The status of underground space utilization in China and other countries and the problems that need to be solved in China are analyzed. Combined with the general trend of intelligent, green, deep and comprehensive development of urban underground space, several suggestions for the development of underground space in China are put forward. Based on the characteristics of the development of underground space in foreign cities, the status quo of domestic underground commercial street, underground road and parking system, subway, integrated pipe gallery, underground complex, underground municipal system, underground storage and logistics systems, relevant laws and regulations and standard specifications are analyzed, respectively. The shortcomings of laws and regulations, management mechanism, urban planning, development protection, information sharing, disaster prevention and investment and financing mode in the development and utilization of underground space in China are analyzed in depth. Combined with the general trend of development of intelligent, green, deep and integrated development of underground space, it is proposed that in addition to the theoretical system and key technologies for the development of underground space, comprehensive management, overall planning, innovative investment and financing, income models and policies and laws that are in line with national conditions are needed.  相似文献   

15.
Shenzhen Zhongshan River crossing Link is the first super integrated project in the world that consists of four different types of structures, i.e. ultra long and wide immersed tunnels, super large span sea crossing bridges, deep water artificial islands and undersea interchanges. The river crossing is designed for two way and 8 lane as per highway technical standards. Based on project characteristics and its technical difficulties, engineering solutions and the associated technology innovations have been listed as follows: (1) Proposed a design concept of standardization, industrialization, intelligence and project integration, and completed the study of overall design of Shenzhen Zhongshan River Crossing Link. An immersed tunnel with a combined steel shell and concrete composite structure is designed and the width of tunnel elements is from 46 to 55.5 m; Lingdingyang Bridge has been designed as a suspension bridge with a 1 666 m main span and two 270 m high main bridge towers. For West Island, a temporary enclosure caisson structure made of ultra large steel cylinders with a diameter of 28 m is designed to achieve a rapid artificial island formation. (2) Summarized the design and construction solutions related to combined steel shell and concrete structural immersed tunnel, the mix design, batching and concrete casting methods of high strength self compacting fluidized concrete, concrete quality check and inspection, design and construction of deep cement mixed (DCM) pile foundation for immersed tunnels, design and construction of large scale undersea dimensional transport interchange, flutter and wind stability design for super large span suspension bridge with monobox girders, and key techniques related to design and construction of offshore anchorage in deep sea. Furthermore, an equipment is developed and innovated for not only transport, also for installation of immersed tunnel elements to ensure the implementation of the project in an effective and economical way.  相似文献   

16.
The Work Meeting on Auto Product Quality sponsored by the Ministry of Machinery Industry (MMI) was held in Tianjin from Oct. 24 to 26 of 1996. Mr. Sun Changji, Vice-minister of the MMI delivered a speech to the 150 participants at the opening ceremony calling on all the employees of auto industry to work hard to bring  相似文献   

17.
Water Supply Project in the Central City of Jilin Province is a large scale project which involves complex geological condition and high technical difficulties. In order to maximize the water delivery, the overlength pressure hydraulic tunnel is introduced. Based on detailed geological survey and other reliable technical references, this project can be treated as a demonstration in terms of how to lay large diameter TBM through a karst area with limestone. The in situ test is introduced to test the non bonded pre stress circumferential anchor tunnel structure and culvert structure when the water transmission engineering line crosses the shallow buried valley section. The Class Ⅰ and Class Ⅱ granite tunnels excavated by TBM is not aligned with saving project investment and speeding up construction progress. The BQ method is introduced to analyze the rock quality classification of long tunnels. There are not many domestic engineering examples of the above mentioned key technologies, and there are no mature theories and experiences to refer to. Based on theoretical research, numerical calculations, model tests, and productive in situ tests, those key technical problems of ultra long and pressurized tunnels are solved. This project has a great theoretical and engineering value.  相似文献   

18.
Targeted to the issue of lacking of systematic design standards for thermal insulation and drainage facilities of railway tunnels in cold regions, the authors propose the method of design division of railway tunnels in cold regions based on the division of cold regions, the current technical status of thermal insulation and drainage in tunnels, and the investigation on some tunnel freezing damage cases in northeastern China and the northern part of North China. Through analyzing the application conditions of the thermal insulation and drainage facilities and combining the measured temperatures in the operating tunnels and drainage facilities, the authors propose the suggested length for the thermal insulation and drainage facilities of tunnels in cold regions in different divisions. The results show that: (1)railway tunnels in cold regions may be classified into 5 divisions based on annual average temperature and average temperature in the coldest month; (2)the elevated thermal insulation ditch only adapts to the cold regions with a higher temperature; (3)an effective measure for thermal insulation and drainage in cold regions is to embed ditches into structures within a certain range from the portal; (4)the ditches may be arranged in structures for the trunk section of long tunnels equipped with thermal insulation measures; (5)for the tunnels with the necessary conditions available, the double spur grade and a steep gradient in the longitudinal slope may be applied, which is beneficial to improving drainage conditions and preventing the ditch from freezing.  相似文献   

19.
I. Background Alternatives to petroleum as an energy source have been an important topic for countries all over the world. The aims are to solve the problems of a lack of oils and protection of the environmental, to reduce as far as possible over-dependence on petrol and to ensure ensure energy safety commensurate with the sustainable development of the auto industry. Since the 1940's, countries have invested large sums of money in  相似文献   

20.
SUN Jun 《隧道建设》2018,38(10):1592-1602
The author explains why a giant undersea immersed tube tunnel was selected for the sea area of the main channel of the east side of the Hong Kong Zhuhai Macao Fixed Link Project, instead of employing a bridge or shield tunnel; and summarizes several domestic and international leading innovative technologies applied in the island tunnel construction of the Hong Kong Zhuhai Macao Fixed Link Project, including the use of huge self stabilized steel cylinders as retaining structure of foundation pits for constructing the artificial islands, the large area and ultra deep "sand compaction pile (SCP) composite foundation" reinforcement technology, "semi rigid segment joints", "sandwich" steel RC combined inverted trapezoid closure joints, and crack control and anti corrosion/durability design for RC tube structure. All these technologies reflect Chinese wisdom and Chinese speed. The author also points out some technical issues to which attention should be paid after the immersed tube tunnel of the project is put into operation: (1) Will the post construction settlement and differential settlement of the immersed tube tunnel further develop after the project is open to traffic? How much is the final convergence value? If it exceeds the limit, what control measures should be taken?(2) How to deal with the issue that the joints of large/small elements or segments are open? How to ensure that all the large and small joints between segments of the tube are "watertight"? Furthermore, the author presents some suggestions and control measures: (1) For excessive post construction settlement (especially differential settlement) spotted on large joints, it is suggested to incorporate "micro disturbance grouting" for post treatment. (2) If a joint opens under the excessive positive bending moment at the floor slab, it is believed that the open joint on the floor slab can be closed again by cutting off some prestressed tendons in the roof slab of the segment to reduce the positive bending moment of the section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号