首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用三维、不可压缩和Lilly LES+FW-H方法,对1:8缩比3车编组EMU6动车组以200,250,300和350 km/h的车速运行时进行气动噪声特性数值模拟,得到列车不同速度级运行时的压力、速度与涡量分布,表面脉动压力、辐射声场等气动与声学性能。研究结果表明:偶极子声源强度主要分布在转向架及其周围的车体表面位置;A计权声压频谱在略小于1 000 Hz频率处测点声压级达到峰值;气动噪声分布频带很宽,噪声能量在1 000 Hz左右较为集中,往高频和低频部分则逐渐衰减;头车流线型附近声压级较大,在尾车以后越远离车体,声压级越小。其研究结果可为高速动车组的气动声学特性优化研究提供参考依据。  相似文献   

2.
基于成熟的明线上高速列车气动噪声计算模型和可压缩大涡模型,考虑声学无反射边界条件,利用计算流体力学软件Fluent建立无限长隧道内高速列车气动噪声计算模型,对比分析高速列车在明线上与隧道内运行时的流场组织结构和气动噪声源。结果表明:高速列车在明线上与隧道内运行时具有类似的流场结构和气动噪声源分布规律,但隧道内的流场结构尺度与强度、气动噪声源强度均比明线上大;车速为350 km·h-1时,隧道内头车排障器尖点扰动区的速度幅值约为明线上的1.2倍,列车尾流区长度约为明线上的1.7倍,整车、1位转向架、头车流线型车底及中间车上部的等效声源声功率分别约为明线上的3.2倍、1.6倍、2.7倍和4.2倍;隧道内活塞效应并不是在全频率范围增加等效声源声功率,而是在包含峰值频率较狭窄的频率范围显著地增加等效声源声功率。  相似文献   

3.
采用大涡模拟和FW-H方法,对1:8缩比8车编组北京轨道交通新机场线列车气动声学特征进行模拟研究。列车模型按照实际列车缩比而成,包含转向架、风挡和受电弓等复杂结构。列车运行速度分别为140,160,220和250km/h。研究分析速度场、涡量场、压力脉动场和辐射声场等。研究结果表明:偶极子声源强度主要分布在尾车、头车流线型车底、第1个转向架、空调机组和受电弓区域;不同测点声压级随着频率的增加,总体呈现为先上升后下降的趋势,在400~700Hz频率左右时测点声压级达到峰值;监测点的总声压级在头车流线型附近较大,在尾车及其下游,总声压级逐渐减小。  相似文献   

4.
350 km·h-1高速列车噪声机理、声源识别及控制   总被引:5,自引:0,他引:5  
为了考察350 km·h-1高速列车在运行状态下的车外噪声水平、主要声源及其源强分布特性,根据国内外高速列车噪声理论和试验研究经验,在列车和线路状况满足ISO3095-2005标准相关要求的前提下,在京津城际铁路选取现场测试工点,采用多通道阵列式噪声数据采集分析系统,对京津城际铁路高速列车噪声进行现场测试.测试数据分析结果表明:350 km·h-1高速列车车外辐射噪声的主要声源为轮轨接触部位、转向架、受电弓及其底座以及车辆连接处的气动噪声;对车辆上不同位置测得的声暴露级按大小排序,前4名的依次为头车轮轨接触位置、第2节车辆受电弓位置、第2节车辆的轮轨接触位置、头车和第2节车辆上部的气动噪声.由此提出350 km·h-1高速列车噪声的控制策略及措施.  相似文献   

5.
对3~8辆编组列车以350km· h-1速度运行时,不同速度横风作用下的气动特性进行仿真研究,并建立列车的阻力系数与列车编组辆数之间的无量纲关系.研究结果表明:对3辆车编组列车的气动特性分析不能取代对其他编成辆数列车的几动特性分析;不同编成辆数列车阻力系数随着横风风速的增加而增大,3辆车编组列车的阻力系数不超过8辆车编组的列车的一半;列车的侧向力系数和倾覆力矩系数随着列车编成辆数的增加而减小;列车编成辆数对头车的阻力系数、升力系数、侧向力系数和倾覆力矩系数影响较小,但是对尾车的影响较大;头车的侧向力系数和倾覆力矩系数明显高于尾车和中间车,尾车的倾覆力矩系数最大值不超过0.4,而头车的最大可达0.7;由于头车的气动安全性比其他位置车辆的低,用头车的气动安全性评估整个列车的气动安全性会偏于保守,但合理、可行.  相似文献   

6.
建立3辆车编组高速列车气动噪声计算模型,包括1辆头车、1辆中间车、1辆尾车、6个转向架和1个受电弓,利用标准k-ε湍流模型和大涡模拟分别计算列车的外部稳态和瞬态流场,并基于瞬态流场用FWH方法计算高速列车远场气动噪声。计算单个转向架、全部6个转向架、车体头部、车体尾部、车体中间部、全部车体、受电弓、列车整体分别为噪声源时的远场辐射噪声,分析这些噪声源对远场噪声评估点的总声压级,以及不同噪声源对远场噪声的贡献,以验证局部气动噪声源对远场辐射噪声与整体噪声源之间的叠加关系。计算结果表明:车体是高速列车远场辐射噪声的主要噪声源,其次是受电弓,转向架对远场辐射噪声影响相对较小;从局部噪声源来看,车体头部、受电弓、头部第1个转向架是高速列车远场辐射噪声的主要噪声源;各局部气动噪声源远场噪声的叠加值与整体气动噪声源远场噪声一致,验证了高速列车整体噪声源与其包括的各局部噪声源符合声源叠加原理。  相似文献   

7.
本文建立包括头车、尾车、中间车、受电弓、6个转向架在内的CRH3高速列车整车三维绕流流动的物理数学模型,用Fluent软件内大涡模型数值计算外部瞬态流场,得到时域Lighthill声源项,对时域声源项进行傅利叶变换得到频域声源项,用有限元-无限元法计算高速列车车头及转向架、受电弓、车尾及转向架附近的气动噪声,得到高速列车主要气动噪声源的声压分布及特点。计算结果表明:受电弓弓头部附近气动噪声最大,而且具有更多高频噪声,300km/h速度运行时其总声压级为156.3dB,受电弓底座也具有很高的声压级,并且具有较多的低频噪声;在车头及第一个转向架附近,转向架区域噪声明显高于车头鼻尖处,其总声压级分别为135.3dB和129.7dB;在车尾及最后一个转向架附近,车尾部噪声大于转向架区域噪声;总气动噪声声压级按受电弓滑板、受电弓底座、车尾部、第一个转向架、车头部逐次降低。通过与现有文献的对比分析,证明了本文计算结果的正确性。  相似文献   

8.
高速列车风对附近人体的气动作用影响   总被引:3,自引:0,他引:3  
采用计算流体力学的数值方法和移动网格模拟计算方法,研究3种车头形状、从200 km.h-1到350 km.h-1的4种车速、从1.0 m到3.5 m的5种人车距离条件下列车风对人体气动作用力和人体附近列车风速度大小的影响,提出列车风对人体最大水平作用力计算关系式和人体附近最大列车风速计算关系式、以及高速列车附近人体安全距离的建议值。计算结果表明:列车风对附近人体产生的作用力因车头(尾)形状不同而差别很大,车头形状越钝,列车风对附近人体产生的作用力越大,完全钝型与充分流线型车头相比,在车速350km.h-1、人车距离1 m时列车风产生的作用力可相差7倍以上;不同车头形状产生的列车风对附近人体的作用力,其差别随人车距离的增大而减小,大致呈二次方函数规律变化;不同条件下车头(尾)通过时列车风对附近人体的水平作用力方向的变化趋势基本相同,作用力方向角变化约300°。  相似文献   

9.
空调设备作为维持轨道车辆车内乘客舒适度的重要组成部分,其外形结构对列车的气动阻力会产生影响.合理的空调导流罩安装角度可以有效降低列车气动阻力.利用计算流体力学(Computational Fluid Dynamics,CFD)方法研究空调导流罩安装角度对160 km/h市域列车气动阻力的影响.研究结果表明:空调导流罩安装角度越小,整车气动阻力越小,相对于无导流罩(90°)工况,导流罩安装角度为15°时,整车减阻达10%.头车流线型气动阻力系数随导流罩角度变化不大,除尾车流线型部分外,其他车辆气动阻力系数随着导流罩安装角度的增大而增大,尾车流线型气动阻力系数随导流罩安装角度的增大而降低.导流罩气动阻力随安装角度的增大而增大,不包含导流罩部分的空调气动阻力随导流罩安装角度的增大而降低.  相似文献   

10.
列车噪声影响车内乘客舒适性,其产生原理复杂,在一定程度上影响着轨道交通车辆的发展,开展列车噪声研究意义重大。文章采用数值仿真方法,以3辆车编组、带转向架、无受电弓的1:8缩比列车模型为基础,运用软件ICEM的拓扑优化、多层网格加密技术、附面层网格技术与网格拉伸技术开展精细化四面体/三棱柱网格划分,构建列车明线运行环境下的计算域网格。通过建立地铁列车气动噪声仿真模型,研究了80 km/h、120 km/h和130 km/h不同工况下列车明线运行的气动声学特性;分析了不同速度下地铁列车流场脉动性能、气动噪声源性能和远场辐射噪声性能,研究列车外部流场情况及其声学规律。仿真结果表明,随着列车运行速度增加,列车车体表面的声功率级逐渐增加,声源能量和声压级也随之增大。对时速120公里地铁列车气动噪声特性的研究可为地铁车型气动声学优化设计提供参考。  相似文献   

11.
为降低高速列车的气动阻力和气动噪声提供理论支撑,以CRH380A型高速列车为原型,建立比例尺为1∶30的高速列车空气动力学模型,应用分离涡模拟方法对其周围流场进行数值计算。在对数值模拟方法合理性验证的基础上,结合湍动能和雷诺应力的变化规律,对高速列车近尾流区涡旋结构的湍流特性进行分析。结果表明:在尾车鼻端附近,近尾流区涡旋结构中的湍流涡旋具有可观的湍动能,并随着向下游发展而逐渐耗散,与此同时涡旋结构中所携带的能量沿展向方向移动;在尾车鼻端附近,受车体侧表面分离形成的剪切流动的影响,近尾流区涡旋结构中的湍流涡旋在较高的垂向位置上能够使流向和展向的脉动速度之间保持很好的相关性,而离尾车稍远的湍流涡旋则会在较低的垂向位置产生相对较大的雷诺应力;雷诺应力在垂向上的变化规律受到分别来自车体底部和车体顶部的分离剪切流动的影响,并且尾车鼻端附近的湍流涡旋在受到由车体底部分离形成的剪切流动的作用时,能使流向与垂向的脉动速度之间保持相对较好的相关性,即相应的雷诺应力较大。  相似文献   

12.
采用空气动力学和车辆动力学2种分析方法,建立考虑横风作用的高速列车空气动力学模型,分析不同风速及车速条件下列车所受的气动载荷特性变化规律;建立车辆-轨道耦合动力学模型,对高速列车在不同风速横风和轨道不平顺组合作用下头车、尾车和中间车的蛇行失稳临界速度、蛇行振动极限环幅值、蛇行振动频率、蛇行失稳特征等进行对比分析。结果表明:高速列车通过横风区段时产生的气动载荷对其蛇行失稳临界速度有明显影响,头车的蛇行临界速度较无风时明显下降,尾车及中间车的降幅次之;无风与风载工况下车辆的蛇行失稳形式存在本质区别,无风工况下车辆易发生二次蛇行,风载作用下车辆易发生一次蛇行;风载作用下,车辆发生蛇行失稳的最不利工况为较大的等效气动横向力和较大的气动升力共同作用的组合工况;风载和轨道不平顺的持续时间对车辆蛇行运动极限环振动幅值会产生影响,因此在评估高速列车在大风工况下的运行安全性时,有必要考虑实际的风载和轨道不平顺激励的大小和持续时间。  相似文献   

13.
高速列车尾流场是复杂的湍流区域,强度不同的旋涡迅速地生成和脱落,对乘客乘坐舒适性和列车运行稳定性、安全性造成重大影响。以CRH380A三编组列车为研究对象,采用IDDES方法对200~450 km/h速度范围内高速列车尾涡的动力学特性进行了研究;通过POD方法对尾流区的强非定常流动进行了降阶分析,基于能量排序得到了流场演化过程中的重要相干结构和主要规律,并分析了各阶POD模态在尾流场演化中的物理内涵。通过对不同速度下的模态结构数量、模态频率等特性的对比分析发现,尾涡脱落的无量纲频率St≈0.15,这确立了高速列车尾涡脱落频率与运行速度的线性关系。研究结果证明了POD方法在列车复杂尾流场研究中的有效性,并为尾车气动外形优化设计提供了参考依据。  相似文献   

14.
通过对CIT500试验列车200~350km/h速度级车外噪声源图谱试验研究,获得高速列车的辐射噪声、表面噪声源图谱与其运行速度的依赖关系,发现转向架区域噪声与运行速度3次方成正比,以轮轨噪声为主;车头、风挡、受电弓区域噪声与运行速度6次方成正比,以气动噪声为主;气动噪声与轮轨噪声均为中低频宽频噪声,具有较大混叠区,但是气动噪声更趋向低频;车外总噪声源频谱谱型具有双峰特点,类似两条抛物线叠加,左抛物线表征气动噪声频谱谱型,右抛物线表征轮轨噪声频谱谱型。进而从声源性质出发,通过声源频谱分析和声学相似讨论,构建车外噪声源频谱分解经验模型,比较准确反映车外噪声源成分随运行速度的变化规律。车外噪声源频谱分解经验模型有助于精确认识我国高速列车噪声源结构和发声机理。  相似文献   

15.
介绍了声强法中P—P技术的使用,并讨论了在使用P—P技术进行声强测量时的相位匹配问题。利用声强法对磁悬浮列车行驶时车厢内的声源进行了识别,并从频率响应的角度对分析结果进行了判断。可以得出,磁悬浮列车以430 km/h速度行驶时,噪声主要通过车厢壁面传入车内。研究了各声强测点处1/3倍频程频谱,分析了各测点处辐射声强对车内噪声频率成分的贡献。可以得出,车厢壁面在100 Hz以下的频率贡献较大,而其它频段上,各测点的贡献相当。  相似文献   

16.
当速度大于300 km/h的高速列车紧急制动时,风阻制动是一种行之有效的辅助制动措施.基于三维定常不可压的黏性流场N-S和k-ε双方程模型,采用计算流体动力学方法对带制动风翼板的高速列车气动性能做初步分析,分别从列车所受气动阻力、垂向力、横向力、流场气动干扰效应、气动噪声等方面对首排制动风翼板在不同纵向位置、不同迎风角度和不同组风翼板纵向布置的选择做了详细计算说明.初步研究表明:①当头车车顶安装单排制动风翼板的高速列车在行驶速度为350 km/h的过程中采取紧急制动时,列车所受的空气制动阻力比未安装风翼板时增大约45%,所受垂向升力增大约70%;②采用风阻制动时制动风翼板迎风面所受最大压力和平均压力随着速度增大从远环境压力值呈抛物线形式增加,所受最小压力从远环境压力值呈倒抛物线形式减小;③在首排风翼板安装位置距离头车司机室前端流线型尾端连接处2m范围内,列车空气阻力随着距离的增大而降低,所受垂向升力基本保持不变,风翼板前后形成的正负压区范围逐渐变小减弱;④首排制动风翼板迎风角在45°~90°内逐渐扩大时,列车所受空气阻力基本保持不变,垂向升力呈先增大后缓降的趋势,气动干扰效应和风翼板迎风面的高压区域逐步减弱;⑤在列车头车车顶最大等间距布置多组制动风翼板时,随着风翼板布置组数的增多,列车承受的空气阻力缓慢增加,垂向升力基本保持不变,制动风翼板间气动干扰效应逐渐增强,风翼板迎风面受压呈现出第1组的受压最大,后续各组压力峰值基本保持一致,略有波动.  相似文献   

17.
为了考察350km·h^-1高速列车在运行状态下的车外噪声水平、主要声源及其源强分布特性,根据国内外高速列车噪声理论和试验研究经验,在列车和线路状况满足ISO3095--2005标准相关要求的前提下,在京津城际铁路选取现场测试工点,采用多通道阵列式噪声数据采集分析系统,对京津城际铁路高速列车噪声进行现场测试。测试数据分析结果表明:350km·h^-1高速列车车外辐射噪声的主要声源为轮轨接触部位、转向架、受电弓及其底座以及车辆连接处的气动噪声;对车辆上不同位置测得的声暴露级按大小排序,前4名的依次为头车轮轨接触位置、第2节车辆受电弓位置、第2节车辆的轮轨接触位置、头车和第2节车辆上部的气动噪声。由此提出350km·h^-1高速列车噪声的控制策略及措施。  相似文献   

18.
采用CRH2-061C动车组,以180~320km.h-1速度往返运行,对某特长水下隧道下行线进行气动效应试验研究。研究结果表明:隧道内瞬变压力、列车风、气动载荷和隧道洞口微气压波值均随着车速的增加而增加,车厢内舒适度随着车速的增加而减少;隧道南口的微气压波值、首波压力梯度均小于北口,这主要是由于南、北口的缓冲结构型式存在差异;隧道内附属设施受到的气动荷载、车内气压3s变化值均在相关标准的要求值之内;车速大于250km.h-1时,乘员有耳鸣和不舒适感。根据研究结果提出如下建议:CRH2-061C动车组通过该隧道的合理速度为260km.h-1;开启隧道内联络通道或布置吸能材料以衰减压力波的传播能量;研究制订复合型舒适度控制标准。  相似文献   

19.
京沪高速铁路南京大胜关长江大桥风-车-桥耦合振动分析   总被引:3,自引:1,他引:2  
用多刚体结构模拟车辆,空间梁单元模拟桥梁,轮轨密贴假定和蠕滑理论处理轮轨间作用力,以快速谱分析法模拟风速场,对桥梁子系统施加静风力和抖振风力,对车辆子系统施加稳态风力,采用实测桥梁3分力系数,建立风-车-桥耦合动力系统.以南京大胜关长江大桥主桥6跨连续钢桁拱为例,进行0~40 m·s1风速下风-车-桥耦合系统动力分析.分析结果表明:桥梁系统的动力响应随桥面风速的增加而增大,其横向响应对风荷载的敏感程度大于竖向响应;桥面平均风速不超过15 m·s-1时,高速列车可以设计速度安全通行桥梁;风速在15~20 m·s-1时,安全通过桥梁的车速不应超过240 km·h-1;风速在20~25 m·s-1时,车速不应超过180 km·h-1;风速在25~30 m·s-1时,车速不应超过160 km·h-1;风速超过30 m·s-1时,不能保证列车安全通过桥梁.  相似文献   

20.
为了研究时速140km/h高速地铁列车以不同运行方式在隧道中运行时的气动效应,采用三维、可压、非定常N-S方程的数值计算方法,对地铁列车由明线驶入隧道及站间运行时产生的气动效应进行数值模拟,分析不同运行方式对高速地铁隧道气动效应的影响。研究结果表明:列车站间运行时,车体表面测点压力峰峰值沿车长方向基本不变;而列车由明线驶入隧道时,车体表面测点压力峰峰值从头车向尾车逐渐降低。2种运行方式下的隧道壁面测点压力峰峰值均在中间风井处达到最小值。并且列车由明线驶入隧道时的最大车体表面和隧道壁面压力峰峰值分别为列车站间运行时的1.37倍与1.49倍。不同列车密封指数下,列车由明线驶入隧道时的车内压力变化均大于列车站间运行时的车内压力变化。因此,地铁列车由明线驶入隧道时的空气动力学效应比站间运行时更加不利。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号