首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
随着高速列车运行速度的提高,列车与空气间的相互作用加剧,气动阻力对列车的影响越来越大.为了在美化列车车头外轮廓的前提下优化司机室区域的空气受流情况,高速列车普遍采用便于成型的玻璃钢裙板结构.在对某型动车组头车玻璃钢结构模型合理简化的基础上,依据EN 12663-1:2001[1]确定了载荷工况,完成对裙板及其安装附件的强度校核,结果对后续玻璃钢裙板结构设计及优化具有一定的参考意义.  相似文献   

2.
文章通过对时速80 km地铁B型车进行空气动力学现场试验,得到该速度等级下车内空气压力的变化情况,并分别采用TB/T 3503.3—2018和CJJ/T 298—2019两种标准对耳压舒适度进行评价。结果表明,时速80 km地铁B型车在避开风井位置的隧道中运行时,司机室和客室的压力变化幅值均满足两种标准的相关要求;但该列车在通过中间风井位置时,司机室和客室的压力变化幅值不能完全满足CJJ/T298—2019标准的相关要求,因此需对风井结构进行优化。  相似文献   

3.
地铁车辆通过隧道时引起的车内外压力波动会对司乘人员造成不适感或危害.文章通过线路试验方法研究了地铁车辆通过隧道时车外压力和车内压力的波动特性,分析隧道截面及车速变化对车内外压力的影响.试验结果表明:隧道截面变化会导致车内压力与车外压力的波动,且车辆通过通风井时会产生明显的压力波动;司机室头车两侧侧窗车外压力变化趋势相同...  相似文献   

4.
针对高速铁路声屏障的安全可靠性,从气动效应角度阐述其研究现状、研究成果及存在的挑战,并基于我国高速铁路声屏障应用场景,探讨列车脉动力的主要影响因素和声屏障结构的振动特性,结合技术标准中与气动效应相关的要求和规定,提出完善标准体系的相关建议,并对未来的重点研究方向进行展望。结果表明:列车脉动力受列车运行速度、列车车型及声屏障设置位置等因素的共同影响,列车脉动力与运行速度的平方基本服从线性关系;声屏障气动效应还与车头流线型、车体截面形状等列车气动性能参数相关,相同速度条件下不同车型的脉动力差异可达45%;在列车脉动力作用下,声屏障钢立柱以横向振动为主,呈现典型受弯构件的特征,而单元板以整体往复横向运动为主,振幅受安装状态的影响显著,声屏障动力性能评估重点为结构的低频振动;未来可结合声屏障结构振动特征和服役性能变化情况,深化声屏障气动荷载产生机理和动力分析方法的研究,探索声屏障服役性能演变机理和规律,完善声屏障结构安全性能检测评估体系,发展快速高效检测技术。  相似文献   

5.
采用空气动力学和车辆动力学2种分析方法,建立考虑横风作用的高速列车空气动力学模型,分析不同风速及车速条件下列车所受的气动载荷特性变化规律;建立车辆-轨道耦合动力学模型,对高速列车在不同风速横风和轨道不平顺组合作用下头车、尾车和中间车的蛇行失稳临界速度、蛇行振动极限环幅值、蛇行振动频率、蛇行失稳特征等进行对比分析。结果表明:高速列车通过横风区段时产生的气动载荷对其蛇行失稳临界速度有明显影响,头车的蛇行临界速度较无风时明显下降,尾车及中间车的降幅次之;无风与风载工况下车辆的蛇行失稳形式存在本质区别,无风工况下车辆易发生二次蛇行,风载作用下车辆易发生一次蛇行;风载作用下,车辆发生蛇行失稳的最不利工况为较大的等效气动横向力和较大的气动升力共同作用的组合工况;风载和轨道不平顺的持续时间对车辆蛇行运动极限环振动幅值会产生影响,因此在评估高速列车在大风工况下的运行安全性时,有必要考虑实际的风载和轨道不平顺激励的大小和持续时间。  相似文献   

6.
以某时速为120 km速度等级的地铁列车为研究对象,基于密封指数及静态和动态密封指数的定义,采用仿真分析和实验室试验的方法并结合相关标准指标要求,对整车进行气密性设计与试制;通过现场空气动力学试验,对整车全线运行及通过短桥隧和人防门时的车内外压力变化情况及车内压力舒适度和动态密封指数进行分析。结果表明:车体和车门对整车静态气密性影响比例之和为90%以上,设计试制时须重点关注车体和车门的密封性能;列车全线运行时压力变化剧烈位置为短桥隧和人防门2处变截面位置,列车通过时头车车内的3 s内压力变化幅值较车外减小43%~67%,列车具有良好的气密性;列车全线运行时车内压力舒适度满足行业相关标准要求,但列车通过人防门时动态密封指数不满足行业相关标准要求,这与该处人防门设计的合理性和相关标准对地铁列车动态密封指数要求的合理性有很大的关系。  相似文献   

7.
基于空气动力学数值模拟方法,针对列车不同部位的转向架和转向架结构表面的气动阻力分布进行分析,对高速动车组列车整车气动效应进行数值仿真。研究结果表明:转向架流场区域在靠近来流端的上部会形成部分死水区,该区域流场与外部质量交换较小,转向架结构表面在来流方向上游会形成一个正压区,在下游方向的转向架结构表面会形成小范围的负压区。列车头车转向架气动阻力明显高于中间车和尾车,其中列车头车I位转向架受到的气动阻力最大,其次是头车II位端转向架,列车的中间车和尾车转向架阻力分布较为均匀,均为头车转向架阻力的60%左右。  相似文献   

8.
文章基于空气动力学理论,运用仿真软件,对建立的不同列车模型进行对比。分析在同等条件下,快速地铁列车不同司机室头型在运行中的动力学特性、气动特性、压力分布及空气阻力,对快速地铁列车司机室头型的研发提供建议。  相似文献   

9.
高速列车头型拓扑结构对气动力的作用规律研究   总被引:1,自引:0,他引:1  
为了得到高速列车头型关键设计部位的拓扑结构对列车气动性能的作用规律,减少头型概念设计时的盲目性,本文以数值模拟和正交试验设计为分析工具,研究高速列车头型的长度、纵剖面型线、水平剖面型线、排障器外形、司机室玻璃形状和车体横截面形状对列车气动阻力和尾车气动升力的影响。将头型的6个设计部位均划分为5种不同的拓扑类型,研究各设计部位拓扑结构的变化对列车气动性能的影响,选取3个影响度最大的设计部位,通过有交互作用的正交表分析不同部位拓扑结构的耦合作用对列车气动性能的影响。得到列车头型各主要设计部位的拓扑结构对列车气动性能的作用规律,给出针对不同气动指标进行头型设计时的合理拓扑结构。  相似文献   

10.
高速列车车体端部吸能结构研究   总被引:1,自引:0,他引:1  
针对高速列车速度高、动能大的特点,设计了车体被动安全防护的特殊端部吸能结构,并通过非线性有限元软件LS-DYNA,研究高速列车头车司机室端两级吸能装置以及车体尾端弱刚度结构的耐碰撞性能,重点考察其与刚性强撞击时的界面力、变形以及能量吸收能力。计算结果表明两级吸能装置变形有序,具备约3.4 MJ的能量吸收能力,可有效保护司机室结构;车体尾端弱刚度区具备6.5 MJ的能量吸收能力,可有效保护乘客区结构的安全。将上述结构应用在某型高速动车组车体并按照欧标EN15227进行36 km/h对撞工况的验证,司机室头部吸能结构变形合理,列车未发生爬车现象,司机室及客室结构完整,头车平均加速度为4.4g,满足标准要求。  相似文献   

11.
准高速列车交会空气压力波试验研究   总被引:10,自引:1,他引:9  
根据在广深准高速线上首次成功地进行列车交会压力波试验所得结果,本文分析了列车交会压力波幅值大小与列车运行速度、交会列车相对速度、线间距、车体截面形状、车头形状的关系,以及高速车对低速车的影响。  相似文献   

12.
武汉市轨道交通16号线列车为时速120 km的密闭性地铁快线列车,采用压力波保护阀。文章通过开展武汉市轨道交通16号线列车空气动力学现场试验,分析了列车车内外空气压力变化规律,并测试了压力波保护阀的执行效果,最后评估了列车运行时交变气压波动下的车内压力舒适度及动态密封指数。结果表明:列车通过变截面时车内压力变化幅值相比车外压力变化幅值减小40%~70%;列车运行过程中压力波保护阀执行到位;车内压力舒适度及列车动态密封指数均满足标准要求。  相似文献   

13.
在定常横风环境影响下,动车组在平地工况运行的稳定性、舒适性及安全性将会恶化。为了揭示其恶化的机理,开展动车组在平地工况伴随定常横风下运行的风洞试验,得到列车表面压力随时间变化的曲线后,再对列车受到的非定常气动载荷时域特性和频域特性进行分析。风洞测试结果表明:在相同风速和同一风向角下,平地动车组车体表面迎风侧1~8号测点和背风侧9~16号测点,其同侧各测点压力平均值在一定范围内波动,总体相差不大。当风向角为90°时,测点压力的幅值和最值随风速的增大而增大,其平均值与风洞来流风速的二次方成正比,即非定常气动压力振动剧烈,波动幅度明显增大。当合成风风速为60 m/s时,测点气动压力的平均值、最小值和最大值随风向角增大呈现先增大后减小的趋势,呈现正弦函数变化规律;当风向角增加到75°时,出现拐点,即最值点;车体表面两侧测点的幅值随风速的增大而增大,即非定常气动压力振动剧烈,振动幅度明显增大。而横风风速和风向角对非定常气动载荷的主振动频率带的影响不大;车体中部两侧测点的频率峰值均集中在0~18 Hz范围内,主振动频率均集中在0~4 Hz区间内,还明显存在频率为4~6 Hz,6~8 Hz和10~1...  相似文献   

14.
为研究快速地铁列车在隧道内运行时的“列车-隧道”耦合空气动力特性,在杭海城际铁路开展实车试验,分别对列车以100 km/h与120 km/h的速度通过隧道时的车内外压力变化情况进行研究,计算压力峰-峰值、3 s压力变化幅值与1.7 s压力变化幅值,对比列车进隧道与出隧道过程中车内外压力变化情况,分析不同车辆编组位置与不同列车运行速度对车内外压力变化的影响,研究空调机组状态与车内压力变化幅值之间的关系。研究结果表明,快速地铁列车进出隧道过程中压力变化幅值相近;列车进入隧道并在隧道内运行时,尾车车内压力变化速率最快,车外压力峰-峰值从头车向尾车逐渐减小,而车内压力峰-峰值沿车长方向基本不变;当列车速度不同时,车内外压力对比应在无量纲时间下进行,随着列车速度的增大,车内外压力峰-峰值增大,压力变化速率加快;关闭空调机组可以显著减小车内压力变化速率,可为乘客舒适性研究提供参考。  相似文献   

15.
基于延迟脱体涡算法和滑移网格技术,建立CRH380A型列车的含有转向架的三维可压缩瞬态仿真模型,模拟研究高速列车气动力、速度场和表面压力这3大绕流特性的变化规律。结果表明:延迟脱体涡算法能较好地捕捉列车通过隧道时的气动特性;当列车头部刚驶入隧道时,气动阻力迅速升高并在车头完全进入隧道时达到最大值,列车下方2侧的速度纵向分量会急剧增加,位于靠近设备舱位置的速度纵向分量会显著降低;当尾车刚驶入隧道时,隧道内壁与列车侧面之间的流场会出现回流区;当尾车全部刚驶入隧道时,气动升力和侧向力骤然增加;当列车全部驶入隧道后,气动力的波动幅值均明显升高;列车通过隧道过程中,列车侧面压力整体上呈现先增后减、最后维持周期性波动的趋势,处于尾流区的车尾部位具有更强烈的波动特征;列车裙板和车底的表面压力整体上均呈先减后增、最后维持在较高幅值波动的趋势,对列车相关结构的疲劳强度产生不利影响。  相似文献   

16.
采用列车气动性能动模型试验装置,对高速列车以不同速度进出车站气动性能进行研究,模型缩比为1∶20,列车采用2车编组。研究结果表明:列车头部或尾部通过瞬间,将会引起车站顶棚处空气压力发生突变,形成具有破坏性的瞬态冲击压力波;车站顶棚不同测点的压力随着车体壁面距测点的间距增大而减小,且列车进站时引起的测点压力系数幅值比出口大5%左右;当两列车在车站交会时,不仅列车通过测点会引起较大的压力波动,而且两列车交会瞬间也会产生剧烈的交会压力波,使得测点瞬变压力曲线显著不同于单车通过测点情况。  相似文献   

17.
基于Realizable k-ε方程的DES数值模拟方法,研究某高速列车头、中和尾车不同区域对整车气动阻力系数的贡献值,并结合风洞试验结果,验证本文所采用的计算方法,计算与风洞试验结果两者偏差在2%以内;各车辆的瞬态气动阻力系数时程曲线在均方根值上下波动,其中头车的脉动幅度最小,尾车最大;头车、尾车的头部曲面区域及各个车辆转向架区域的气动阻力占整车气动阻力的77.8%;前端转向架区域气动阻力系数从头车、到中间车、到尾车大幅度减少,后端转向架区域气动阻力系数逐渐增加;从流场结构来看,列车的头部、风挡、车底结构以及车尾处产生了大量的漩涡;沿车长方向,头车车体附近的漩涡情况好于中车和尾车。  相似文献   

18.
近年来,真空管道列车系统以其减阻降噪、高速运行的特点成为高速列车新的研究方向。真空管道列车运行环境复杂多变,对管道内部气动特性及流场结构的研究在真空管道列车的设计和优化中尤为重要。研究基于SST k-ω湍流模型及大涡模拟方法,采用三维数值模型对阻塞比为0.15的真空管道磁悬浮列车系统在马赫数为0.490~0.980的来流条件和0.3~0.1 atm的管道压力下进行稳态和非稳态模拟,得到列车周围外部流场的气动特性,详细阐述了列车尾流激波的形成和传播。根据不同来流马赫数和压力条件将流场分为3类典型工况,并沿流动方向将流场分为5个区域分析流场特性。结果表明,随着来流马赫数从0.490增加到0.654,尾车肩部开始出现激波。随着来流马赫数进一步增加至0.817,尾流区域出现斜激波、“X”型激波结构等复杂流动现象,不同来流马赫数条件下跨声速流场中的气流马赫数分布相似,压力系数呈现梯度分布。激波与尾涡、边界层相互干涉与融合,成为尾流流场的主要结构。研究成果可为真空管道列车不同来流速度和不同真空度情况尾流激波抑制以及气动阻力优化设计提供工程指导。  相似文献   

19.
为研究地铁列车内空气循环状态对客室压力变化及列车开关门过程的影响,搭建了车内外压力测试系统,开展了库内静态及线路动态压力测试,针对空气温度控制内外循环、恒温空气内外循环及开关门动作等过程的客室内压力变化特点进行了试验对比研究。研究结果表明:空气降温内循环过程车内压力变化显著,快速降温过程将导致在进站开门时形成开门阻力;车门关闭过程中,由于气阻效应和新风系统的作用,车内压力升高,形成关门阻力;列车气密性和隔热性能越好,客室内温度变化过程越接近绝热过程,温度变化导致的压力变化就越显著;调控空气循环过程,限制空气制冷循环强度,能够有效抑制由此引起的车内压力变化和降低关门气阻。文章为解决因列车内空气循环过程而导致的车门开闭异常及舒适性下降提供了试验依据,并提供了有效优化方案。  相似文献   

20.
为研究城市轨道列车气动特性以及底部部件对列车气动特性的影响,针对三节车模型进行简化,保有底部部件较高完整性,采用Realizablek-ε湍流模型预测列车周围流场。数值计算结果表明:列车气动阻力分布呈现出尾车阻力最大,占三节车总阻力的48%;中间车阻力最小,占总阻力的14%。其中转向架分别占头车、中间车和尾车总阻力的15.1%,56.4%和23.0%。车底设备分别占头车、中间车和尾车总阻力10.5%,10.3%和8.6%。因此对于头车、尾车采取减阻方案首先是采用流线型头型的方式减少流动分离现象。对于中间车减阻方法则要首先针对底部部件,采取密封舱的方式减少其产生的压差阻力。通过优化列车头型发现列车气动特性得到明显的改善,其中列车头车、中间车和尾车阻力分别为原始情况下的61.4%,70.1%和58.3%。在流线型外形基础上进一步稳定列车底部区域流场也有效改善了底部区域部件气动特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号