首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高速铁路路基红层泥岩填料力学特性试验研究   总被引:2,自引:0,他引:2  
研究目的:本文主要研究红层泥岩的击实性质、CBR承载比、模拟路基荷载下的膨胀率、无侧限强度、三轴剪切强度及压缩模量,用以验证将红层泥岩用作高速铁路路基及基床填料的适应性.研究结果:得出了红层泥岩的最大干密度、最优含水量、浸水前后的强度及变形特性、CBR承载特性与膨胀特性等物理力学特性;结合达成新线试验段的试验研究及施工,分析了高路堤浸水前后的变形特性,提出了在实际工程中使用红层泥岩填料填筑路基的意见和建议.  相似文献   

2.
将红层泥岩用作客货共线铁路路基基床填料在国内还没有先例,红层泥岩是否能作为路基基床填料,其动强度和累积变形是否满足要求是关键因素之一.在遂渝线无砟轨道试验段对红层泥岩作为路堤本体填料可行性研究的基础上,本文进一步研究红层泥岩的动力学特性,研究红层泥岩用作达成铁路二线的路堤及路基基床底层填料的可行性.本文通过动三轴试验,得出在最佳含水率、一定压实度、不同围压条件下红层泥岩的动强度和累积变形等动力学特性,进而论证红层泥岩用作铁路路基特别是基床底层填料的可行性,为红层泥岩用作铁路基床填料提供重要的设计和计算参数.  相似文献   

3.
研究目的:为解决富水区红层黏土路基含水率高、无法压实等问题,本文通过向原状土中掺入一定粒径配比的弱风化红层泥岩碎石,制成不同级配和含水率的改良填料,然后进行重型击实试验、大型直接剪切试验及无侧限抗压强度试验,以获得满足铁路路基填筑要求的填料方案。研究结论:(1)红层原状土通过掺入弱风化泥岩碎石可有效降低原状土的含水率,改良填料的最优含水率为10.26%,最大干密度为2.22 g/cm~3;(2)最优含水率时改良填料的黏聚力c为29.336 k Pa,内摩擦角φ为32.86°,相较于红层天然原状土抗剪强度有明显的提高;(3)改良填料的无侧限抗压强度在含水率为8.85%时最大,达到518.80 k Pa,随着含水率的增加其逐渐降低;(4)通过混合弱风化红层泥岩碎石与红层黏土的改良填料,不仅没有改变红层黏土特性,而且能有效降低原状土填料含水率,增加抗剪强度和抗变形能力,改良后填料的含水率和压实性能满足《铁路路基设计规范》要求;(5)该改良方案可为西南富水红层地区铁路路基基床以下路堤填筑工程提供参考。  相似文献   

4.
为研究固结压力对泥岩填料孔隙分布以及土水特征曲线(SWCC)的影响,以非饱和泥岩填料为研究对象,采用压汞试验分析不同固结压力作用下的土体微观孔隙分布,探究孔隙随荷载的演变规律,并结合毛细原理提出基于压汞实验计算SWCC的方法。结果表明:土体中收缩孔隙的存在使得进-退汞曲线表现出显著的滞回性,且瓶颈效应使得压汞试验中土体小孔隙分布密度偏大,大孔隙分布密度偏小;选择分形曲线的转折点作为泥岩填料孔隙划分界限,可将其孔隙划分为5个部分,孔隙含量的变化以大中孔隙体积被压缩为主,小微和超微孔隙几乎不受固结压力的影响;干密度为1.5 g·cm—3时不同固结压力作用下的土水特征曲线可采用对数曲线表示。  相似文献   

5.
研究目的:雅万高铁沿线属热带雨林气候,丘前缓坡与丘陵区以路基工程为主。表层为火山灰形成的黏性土,其下为第三系全~强风化的泥岩,黏土及泥岩均具有膨胀性。膨胀岩土具有强胀缩性、强裂隙性的特点,在大气影响下强度剧烈衰减容易造成路堑边坡失稳,对铁路的安全运营产生较大影响。因此,有必要对沿线膨胀岩土的膨胀和强度特性进行研究,从而为路堑边坡的防护与治理提供依据。研究结论:(1)全风化泥岩具有中等膨胀、液限高的特点,天然含水率31.3%,饱和度92%,液限56.2%,压缩系数0.313 MPa~(-1),自由膨胀率67%;(2)试样含水率和试验过程中的边界条件对抗剪强度影响较大,干湿循环次数对饱和抗剪强度影响较小;(3)失水后试样膨胀率显著增大,有荷膨胀试验应提供有荷膨胀率(δ_(ep))和有荷压缩膨胀率(δ_(avp))两个指标,δ_(ep)用于求膨胀力,δ_(avp)用于求膨胀变形;(4)本研究成果可作为雅万高铁膨胀岩土路基设计及膨胀性试验规程修编的依据。  相似文献   

6.
研究目的:我国西南、西北、中南及东南等地区广泛分布红层泥岩,开展红层泥岩填筑高速铁路路基技术的研究,提出系统的红层泥岩填料使用方法与工程技术,对我国铁路建设具有重要意义.研究结论:通过室内土工试验、现场路基填筑试验、路基离心模型试验与现场原型路基沉降观测、现场原型路基循环加载试验等方法,系统研究了红层泥岩土填料工程特性、红层泥岩路基压密沉降、累积变形特性等关键技术问题.在此基础上提出了利用红层泥岩填筑高速铁路路基工程技术,主要包括红层泥岩填料制备标准、红层泥岩路基填筑压实标准、红层泥岩路基结构及设计参数、红层泥岩填筑施工工艺及要点等内容.工程实践表明,所提出的红层泥岩填筑高速铁路路基技术是合理、可行的.  相似文献   

7.
为探明高速铁路路基膨胀机理及其诱发的钢轨上拱响应规律,对出现上拱病害的工点进行现场分层变形监测,并利用新型粗粒土膨胀仪开展室内试验探究该工点路基泥岩膨胀率与含水率间的相关关系,最终结合DEM-FDM耦合的数值模拟手段,系统分析泥岩路基不同膨胀率下双块式无砟轨道的钢轨上拱位移及轴向应力分布规律.现场分层变形监测结果显示路基层具有一定膨胀潜势,路基泥岩膨胀变形引起了钢轨的上拱位移;室内试验表明取样工点路基泥岩在现场含水率下的膨胀率达到5.455%,路基泥岩膨胀率与含水率间遵循Logistic函数关系;数值模拟计算结果表明钢轨上拱量与泥岩路基膨胀率间服从Logistic分布,钢轨轴向应力改变量与泥岩路基膨胀率服从Nelder分布.  相似文献   

8.
黄土湿化特性的三轴试验研究   总被引:1,自引:0,他引:1  
研究目的:本文旨在通过三轴试验,研究黄土湿化应力应变关系、强度特征及影响因素。 研究方法:通过等围压固结湿化试验和三轴剪切湿化试验进行研究。 研究结果:获得不同围压条件下固结湿化变形随时间变化规律,初始含水量、压实度的影响规律;获得不同应力水平下湿化应力应变关系、剪切湿化变形规律以及湿化对强度的影响等成果。 研究结论:(1)湿化变形受初始含水量及压实度的影响很大;(2)湿化条件与不浸水条件下,应力一应变关系均表现为应变硬化特性;(3)剪切湿化体积变形随应力水平的增加而减小,轴向变形随应力水平的增大而增大;在同一应力水平下,体积变形与轴向变形均随平均主应力的增大而减小;(4)湿化不仅降低了黄土的强度,也降低了黄土达到破坏时的应变。  相似文献   

9.
细粒尾矿在堆坝过程中由于尾矿坝高度不断增大,其固结度也在不断改变,相应的抗剪强度指标也随之改变,抗剪强度指标对堆积坝的稳定性分析至关重要。对尾矿砂进行相应的固结试验及直剪试验,以及不同压实度下的直剪试验,推导了固结度与压实度之间表达式。结果表明:随固结度增大,土体粘聚力减小而内摩擦角增大;随压实度增大,粘聚力及内摩擦角均有增大趋势;尾矿砂固结度与压实度之间满足一定的关系。不同固结度下尾矿抗剪强度指标可以方便地通过不同压实度下的直剪试验获得。  相似文献   

10.
本文通过室内膨胀率试验和剪切试验,探究了肯尼亚蒙巴萨地区重塑膨胀土的膨胀特性和抗剪强度特性,分析了初始含水率、初始干密度及干湿循环效应对其特性的影响,并提出针对该地区膨胀土边坡防护工程的相关建议。研究表明:(1)随膨胀土初始干密度的增加,膨胀率呈线性关系增大,黏聚力呈指数关系增大;(2)随膨胀土初始含水率的增加,膨胀率呈分段线性关系降低,黏聚力和内摩擦角呈线性关系降低;(3)干湿循环效应使得土体黏聚力出现大幅度的衰减。  相似文献   

11.
非饱和渗透系数是非饱和膨胀泥岩土体渗流分析及水-力耦合研究的基础,对工程建设和工程病害预防具有重要意义。以新疆哈密地区微膨胀泥岩破碎土为例,制备4种不同初始干密度重塑土样,采用压力板法和滤纸法试验测量其土-水特征曲线,采用变水头试验测量土样饱和渗透系数;通过自主研制的土柱渗流试验装置进行恒定体积条件下一维土柱入渗试验,探究湿润锋前进法和瞬态剖面法的适用性,以获得不同初始干密度土体的非饱和渗透性曲线,并结合试验值对Childs和Collis-Geroge (CCG)渗透系数预测模型进行修正。结果表明:新疆哈密微膨胀泥岩破碎土的基质吸力范围为1~105 kPa,渗透系数范围为10-9~10-4 cm·s-1;试验土样初始干密度越大,大孔隙占比越小,阻渗作用越明显;CCG渗透系数预测模型可较好地反映土体渗透性曲线发展趋势,但在量值上随吸力的增加逐渐“远离”土体实测渗透性曲线;修正后的CCG渗透系数预测模型可反映不同初始干密度下土体渗透性曲线的发展规律。  相似文献   

12.
内蒙古高原锡林郭勒盟部分地区分布有上第三系上、中新统全风化泥岩,具弱-强膨胀性。通过对锡林浩特至二连浩特铁路全风化膨胀性泥岩的地层岩性特征及物理力学性质的分析评价,根据膨胀性泥岩的膨胀潜势分级及路堑边坡高度、路堤高度的不同,提出了各种条件下对路基工程的处理措施。  相似文献   

13.
软质红层泥岩碾压特性研究   总被引:2,自引:0,他引:2  
对软质红层泥岩的碾压特性进行室内、室外的试验,获得了分层厚度、碾压遍数与路堤填筑压实度的关系,填料级配的范围,路堤填筑压实度标准,密实度检测方法及碾压设备对碾压效果的影响等成果。  相似文献   

14.
客运专线无碴轨道红层泥岩改良土路基离心模型试验研究   总被引:1,自引:0,他引:1  
红层泥岩是一种特殊岩土,其工程性质不能满足无碴轨道路堤填料要求,需对其改良。模型中的路堤采用4%的水泥进行改良、含水量为8.66%、压实度达到95%,通过红层泥岩路堤离心模型试验,得到施工期沉降、工后沉降与时间的关系,并与非改良红层泥岩的离心模型试验结果进行对比,从而确定红层泥岩路堤填筑施工参数;并分别对2种填料路堤进行数值模拟,对比试验和数值模拟的结果。研究表明:以改良红层泥岩为路堤填料可以使路堤沉降减小,满足了无碴轨道对路基填料的要求,数值模拟结果与试验结果基本相符。  相似文献   

15.
合肥地铁车站基坑膨胀土有荷条件下的变形规律研究   总被引:1,自引:0,他引:1  
为了考察合肥地区膨胀土的膨胀特性,选取合肥地铁车站基坑膨胀土进行了击实土样的有荷膨胀率试验,研究膨胀土的膨胀时程曲线特征及其有荷膨胀率与初始含水率、压实度、荷载的关系。试验结果表明:有荷膨胀时程曲线可分为等速膨胀、减速膨胀、缓慢膨胀阶段,初始条件不同膨胀时程曲线特征也不同;有荷膨胀率随初始含水率的增加而线性降低,有荷膨胀率与荷载的对数呈线性关系;压实度对有荷膨胀率的影响不显著。  相似文献   

16.
南宁膨胀土膨胀变形规律的试验与应用研究   总被引:2,自引:0,他引:2  
通过不同初始干密度、初始含水率在不同垂直压力下的膨胀变形试验,研究南宁膨胀土的膨胀量与初始干密度、初始含水率以及垂直压力的相关关系。研究结果表明,膨胀量随初始干密度的增大而增加,随初始含水率和垂直压力的增加而减小;通过回归分析发现,膨胀率与初始干密度和初始含水率成线性关系,而与垂直压力成半对数线性关系。在此基础上,建立了南宁膨胀土膨胀率的三元回归方程,并通过某大型模型试验验证了该方程的正确性与实用性。本文所建立膨胀率三元回归方程为简便而准确地预测和估算膨胀土地基的膨胀潜势和差异隆起提供了依据。  相似文献   

17.
对取自辽河流域火渤铁路沿线广泛分布的细砂填料,开展颗粒分析、颗粒密度、相对密度和标准击实等土工试验;通过构筑小型砂箱模型,进行模拟压实机械-土接触形式的筒形、平面和凹形压板对细砂填料压实效果的对比试验,分析压板类型对位移场和干密度的影响规律。研究结果表明:细粒含量小的均匀级配细砂填料具有平缓的"√"型击实曲线特征,在完全干燥或者充分湿润下易获得较大干密度。压实机械-土接触形式对细砂填料压实特性及效果影响显著,筒形接触存在外挤作用和应力集中特征,易导致无黏性细砂填料产生明显横向变形,甚至出现局部剪切破坏;平面和凹形接触应力相对均匀,具有一定侧向约束能力,变形以压密下沉为主,更适合细砂填料压实。  相似文献   

18.
针对川藏铁路成雅段沿线富水红层黏土路基含水率高、无法压实等问题,在原状红层黏土中掺入一定粒径配比的弱风化红层泥岩碎石改良填料,通过室内物理力学性质试验,确定了原状土与泥岩碎石的质量比例为1:1和2:3的两种改良填料。采用现场施工试验,测定两种改良填料的地基系数K_(30)、压实系数K和孔隙率n,探索合理的现场施工压实技术方案。研究结果表明:(1)改良填料1和2均级配良好,属于B组填料;(2)改良填料1相比改良填料2具有较高的最大干密度(2.22g/cm~3)和较低的最优含水率(10.26%);(3)随着含水率的增加改良填料的无侧限抗压强度逐渐降低,在最优含水率和压实系数为0.95时,改良填料1和2的无侧限抗压强度分别为424.1 kPa和219.1 kPa,均满足规范要求;(4)推荐施工压实技术方案为,在虚铺厚度为35 cm时,20 t压路机的合适碾压方式为先静力碾压1遍,然后微振动碾压1遍,最后强振动碾压6遍;经现场测试,各项指标均满足规范要求,能较好地应用于基床底层以下的路堤填筑。  相似文献   

19.
南水北调禹州段压实膨胀土膨胀性试验研究   总被引:1,自引:1,他引:0  
以南水北调中线禹州段压实膨胀土为研究对象,通过对压实膨胀土样在不同初始状态下的含水率、干密度和竖向荷载的研究,并用多元线性回归的分析方法,提出了压实膨胀土的膨胀变形随初始含水率、干密度、竖向荷载这三个因素的变化规律,同时获得膨胀力随初始含水率和干密度这两个因素的变化规律。本文总结出压实膨胀土的膨胀变形和膨胀力的计算公式,并对计算公式进行了试验验证,证实了计算公式的正确性。试验结果表明,在实际工程中可以通过少量的试验得到计算公式的参数,并用文中提出的计算公式直接计算出膨胀量和膨胀力的值,以预测膨胀土体对工程可能产生的潜在危害。  相似文献   

20.
研究目的:路基沉降问题一直是交通运输行业关注的重点。近年来,在西南山区公路、铁路建设中相继发现炭质泥岩这类特殊岩土,炭质泥岩亲水性强,受水后软化效应明显,这给沉降控制标准极高的高速铁路后期运营带来极大危害。本文结合桂广铁路某车站炭质泥岩段路基沉降治理工程,在室内通过物理、水理及力学性质试验,结合扫描电镜(SEM)试验研究该炭质泥岩的工程力学特性。研究结论:(1)炭质泥岩干密度越大,其膨胀率、膨胀力也越大;含水率越大,其体积收缩越明显,缩限含水率为7. 2%~8. 5%;(2)炭质泥岩颗粒呈多边形、面积较大的薄片状颗粒,浸水后颗粒崩解、面积减小,大孔隙明显增多;(3)炭质泥岩浸水前表现出明显的剪胀特性,浸水软化后表现为剪切压密,浸水软化前后其黏聚力和内摩擦角分别为112. 7 k Pa、4. 5 k Pa和29. 9°、8. 1°;(4)炭质泥岩软化后的压缩变形量接近浸水前的19. 6倍;浸水软化前后的压缩模量E_(s,1-2)分别为13. 0~15. 0 MPa和3. 0~5. 0 MPa;(5)本研究结果可为炭质泥岩地层的在建和拟建交通工程的设计与施工提供借鉴或参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号