首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 656 毫秒
1.
地铁系统中空心电抗器产生的漏磁场会对周围环境产生电磁污染,因此防磁板的磁屏蔽作用至关重要。文章建立了空心电抗器的三维有限元模型,对比分析了有无防磁板时空心电抗器产生的漏磁场在车厢内的分布情况,研究了防磁板的材料和尺寸对车厢内不同位置磁场强度的影响。最后对设计的防磁板进行了上车试验。试验结果表明,所设计的防磁板满足车厢内部地板上方30 cm处的气隙磁通密度最大值小于0.8 mT的要求。  相似文献   

2.
与轮轨交通不同,高速磁浮列车轨道是一种同步直线电机的长定子,其因长距离露天铺设,有可能会出现定子电缆下挂、定子电缆绝缘层破损、铁芯环氧层老化破裂以及定子段间大错牙等故障情况,这些故障将直接影响列车的安全高效运行。为了实现上述故障的快速检测,以磁场为研究对象,对高速磁浮长定子电机及其轨道进行建模,仿真分析上述故障情况下的行波磁场,探讨主漏磁场与故障之间的规律,其中电缆下挂和铁芯环氧层老化破裂故障对应行波磁场的减弱,极端情况下减弱程度为25%;绕组绝缘层破损造成三相短路故障对应行波磁场强度增大近5倍,5和7次谐波也更加明显;轨道不同方向错牙故障对应行波磁场幅值的不同大小变化,当上下偏移3 mm时,变化程度约为10%,这些规律为后续的轨道故障检测工作提供理论依据。  相似文献   

3.
罗芳  张昆仑  王莉  王滢 《铁道学报》2006,28(3):43-46
高速常导磁浮列车中的直线同步电机系统是集列车悬浮、牵引、导向及发电功能于一体的核心系统.本文详细介绍了该系统旋转模拟试验台的设计思路及结构特点,并利用有限元分析软件对其额定运行点进行了二维电磁场分析.给出了气隙磁场空间分布图,分析了该系统直线发电机的工作机理,重点计算了试验台额定运行时直线发电机的各条发电支路的磁通变化规律及相应的发电特性.对发电特性的波形、交变频率、感应电势幅值、相邻2条支路的发电特性间的相位差进行了分析,确定了试验台结构参数与其相互关系.对试验台进行的一系列试验结果证实了理论分析所得结论.由此确定了高速常导磁浮列车实际运行时,车载直线发电机的发电情况及其特点.  相似文献   

4.
电磁型磁浮列车的悬浮系统为典型的非线性系统,经常受到外界扰动影响而失去稳定。针对悬浮系统的这种特点,设计一种干扰补偿的非线性悬浮控制器:在合理假设的基础上,建立EMS型磁浮列车悬浮系统的非线性数学模型;通过反馈线性化将该非线性模型精确线性化,得到等价的线性模型。然后,设计将反馈线性化补偿与扩张状态观测器相结合的悬浮控制器,利用外部扰动观测值对悬浮系统进行补偿。这一设计可大幅度提高悬浮系统的抗干扰能力。仿真实验结果表明,该控制器的控制性能明显优于基于反馈线性化方法设计的控制器,对干扰具有更强的鲁棒性。  相似文献   

5.
文章首先分析高速磁浮列车运行阻力和气动升力随列车速度的变化规律;然后,通过分析气动升力、列车悬浮力和牵引力三者之间的关系,得到在气动升力影响下牵引力的变化曲线;最后,以上海高速磁浮系统为例,分析气动升力对列车运行速度的影响。结果表明,为应对气动升力的增加,悬浮磁场悬浮力相应调节减弱,导致在相同的牵引电流条件下直线电机输出的牵引力减小,最终降低列车所能达到的最高运行速度。  相似文献   

6.
研究目的:中低速磁浮列车运行时,会对外产生电磁辐射。目前对中低速磁浮交通电磁辐射的研究主要采用现场测试的方式,基于测试值,分析中低速磁浮交通对临近铁路、机场等相关无线电子设施的电磁辐射影响。本文则从理论角度分析中低速磁浮交通电磁辐射的原理,通过Maxwell软件对悬浮电磁铁产生的直流稳态磁场和直线电机产生的低频交流磁场进行仿真分析;采用时域有限差分方法对电弧放电引起的高频电磁场进行理论计算,最后基于理论结果分析中低速磁浮交通对临近铁路和机场无线设施的电磁辐射影响情况。研究结论:(1)中低速磁浮交通产生的对外电磁辐射主要包括三个方面:悬浮电磁铁产生的磁场为直流稳态磁场,主要分布于磁浮气隙附近;直线电机产生的磁场为低频交流磁场,由于频率很低,无法形成有效的辐射,故主要分布在列车附近;电刷与供电轨产生的电火花能辐射出MHz级别的电磁波,能够有效地在空间中进行传播,故干扰距离较远;(2)中低速磁浮交通产生的电磁辐射场是一个复合空间电磁场,在近距离空间场不仅包括电弧放电引起的高频电磁场,还包括悬浮电磁铁、直线电机产生的低频磁场,在远距离空间场主要包括电弧放电引起的高频电磁场;(3)本研究成果可用于了解中低速磁浮交通的电磁辐射原理和对外的电磁辐射影响,可为中低速磁浮交通的工程建设提供参考。  相似文献   

7.
基于永磁电动悬浮的原理,将Halbach环形永磁轮和导体板顺时针旋转后倾斜布置,提出一种实现磁浮列车“悬浮-导向-推进”一体化方案。首先,采用ANSYS Maxwell有限元仿真软件对斜置永磁轮的三维力特性进行分析,仿真结果表明:对于单个外径为200 mm的永磁轮,倾斜角度应不小于60°,从而保证浮重比大于5.5,此时仍可获得310 N的推进力和380 N的导向力。然后,进一步分析了永磁轮三维力随工作气隙、导体板厚度和电导率的变化规律:随着工作气隙变大,三维力均呈下降趋势;随着导体板厚度和电导率的增加,悬浮力和导向力先增加后饱和,驱动力则先增大后减小。基于上述分析结果,给出了新型磁浮列车“悬浮-驱动-推进”一体化的概念模型设计,并对更大直径、宽度的磁轮进行了计算分析,结果表明:直径250 mm永磁轮的磁场利用率最大,磁场利用率和磁轮宽度的变化呈正相关。相关的研究工作是对永磁电动悬浮理论的应用和拓展,能够有效降低磁浮列车系统的建设成本,为“悬浮-导向-推进”一体化的新型磁浮列车设计提供参考。  相似文献   

8.
以长沙中低速磁浮列车和25 m跨径简支梁为对象,建立包含完整悬浮控制系统和细致轨道结构的磁浮车辆-轨道-桥梁垂向耦合振动模型,编制数值仿真程序,计算车辆以80 km/h速度通过不平顺线路时车轨桥耦合动力学响应,利用已有文献测试结果初步验证仿真模型。结果表明,车体的垂向振动很小,悬浮间隙波动量不超过0. 6 mm,最大动态悬浮力占额定悬浮力的24%,中低速磁浮车辆运行平稳,电磁铁动荷载系数低。桥梁跨中垂向挠度为2. 66 mm,小于磁浮简支梁挠跨比设计限值;跨中轨缝处F轨最大垂向位移为3. 04 mm,其中包含轨排自身弹性变形产生的0. 4 mm垂向位移,约占F轨总位移的13%。梁端和跨中处伸缩接头很好地限制F轨端部变形,但F轨端部垂向加速度幅值超过2g,约为中部的4倍,这对F轨伸缩缝连接副提出较高要求。  相似文献   

9.
基于涡流制动原理建立涡流制动力的数学模型,并利用ANSYS Maxwell软件建立LECB(线性涡流制动)三维仿真模型。根据控制变量法研究列车速度、气隙、励磁电流等因素对涡流制动特性的影响,并分析了常用制动和紧急制动工况下的电磁特性。研究结果表明:线性涡流制动力受速度的影响明显,低速时制动力快速上升并达到幅值,然后随着速度的增加,制动力下降并趋于平稳;励磁电流、励磁线圈匝数与线性涡流制动力成正相关,气隙、钢轨材料电导率与线性涡流制动力成负相关;相同条件下,励磁线圈材料为铝时,线性涡流制动系统产生的制动力大小优于励磁线圈材料为铜时产生的制动力。  相似文献   

10.
第五讲总装零部件的制修要求(续前) 2 牵引电机前、后端盖与油封牵引电机工作时,某些部件(例如轴承、后支架、电枢线圈鼻部等)由于漩涡气流而产生局部过压与局部负压,如图5-3中在上端盖附近的电机内部空间形成负压。图中内油封为横向布置的多道迷宫式沟槽油封,实际工作中还有其它结构形式,如采用径向布置的迷宫式油封。图中端盖上或轴承盖上的油封7称之为静油封,而压装在电机转轴上的油封4与6则称之为动油封。正常情况下动、静油封沟槽之间存在一定间隙(约为0.5 mm),此间隙太大则油封漏油,太小则油封发热烧损或轴承温升超限。  相似文献   

11.
为有效评估典型地铁站台射频天线对乘客电磁暴露的安全性,设计地铁站台无线通信系统吸顶天线和乘客人体模型,利用基于有限元的电磁仿真软件,构建吸顶天线辐射下的地铁站台乘客候车电磁环境模型,研究候车乘客的公众电磁暴露问题。结果表明:天线分别工作在900和2 440 MHz时,人体组织的平均比吸收率最大值分别为4.441×10-7和1.165×10^-6W·kg^-1,电场强度最大值分别为0.139和0.148V·m^-1,平均比吸收率在人体组织内的衰减均大于电场强度的衰减;2 440MHz时的射频电磁能量在颅内的穿透能力小于900MHz时;所有计算值均低于国际非电离辐射委员会制定的公众电磁暴露限值,说明地铁站台射频天线对乘客的电磁暴露不会构成健康威胁。  相似文献   

12.
基于现场采集的阻抗参数,建立高速铁路“网-车-轨”牵引供电系统等效电路模型,进而建立包含弓网电弧仿真模型的“网-车-轨”三位一体的牵引供电系统有限元模型,并通过与实测升弓过电压进行对比,验证有限元模型的可靠性;将由等效电路模型计算得到的电压激励加载在有限元模型上,调整列车运行速度和弓网离线时间,分析其对弓网电弧发展的影响,研究弓网中离线和大离线工况下的过电压特性和不同接地方式下的车体电位和磁场分布。结果表明:当列车运行速度较大且弓网离线时间大于200 ms时,易发生弓网完全离线,并产生较高车体过电压;车速为300 km·h-1时,弓网离线导致的车体过电压达6.45 kV;车底主要区域对地电位高于2 kV,磁感应强度峰值为3.8 mT;通过增加3车保护接地数量,提高车体过电压的泄放能力,使车顶-轴端过电压降至5.47 kV,最大磁感应强度降至2.6 mT,车底区域磁场分布更加均匀,有效地抑制了车体过电压,改善了车载设备的电磁工作环境。  相似文献   

13.
为保障TBM高效安全运行,提出一种脉冲涡流检测(PECT)的刀圈径向磨损量无损检测方法。先基于Maxwell时变电磁场理论建立有限元模型,采用控制变量法探究线圈高度、内半径和外半径3个激励线圈参数的优化策略;再搭建刀圈径向梯度化磨损量无损检测有限元模型,研究刀圈径向磨损量与前期电压信号积分值的映射关系,提取可连续反映刀圈磨损程度的特征量,并研究不同提离距离下刀圈径向磨损量与特征量的映射关系。结果表明:在给定激励线圈外半径取值的前提下合理调节内半径取值,可最大程度兼顾对激励线圈高分辨率、强耦合程度的要求;检测线圈与刀圈的最远距离为64 mm,在满足48.26 cm刀圈最大径向磨损量为35 mm的基础上保留了29 mm余量,比传统涡流检测的最远提离距离提高了83%;该方法提高了探头远距离检测能力,保障了探头安装空间,同时显著降低了探头被岩碴刮擦损伤的风险。  相似文献   

14.
高速磁浮是利用电磁力将车辆悬浮于导轨上,利用直线电机驱动列车前进的铁路系统,其悬浮导向系统、轨道梁系统、牵引运控系统等与高速轮轨有着显著区别。通过线路工程、轨道工程、桥梁工程、隧道工程及牵引供电工程、运行控制工程、无线通信工程等方面,对比分析了高速磁浮与高速轮轨主要技术参数,以期为高速磁浮工程设计与技术研究方向提供参考。研究结果表明:高速磁浮对轨道结构精度、平顺性,桥梁频率、变形以及隧道内车辆气密性提出了更高的要求,设计时要求桥梁一阶竖向自振频率不小于1.1倍列车通过频率;此外,高速磁浮采用地面控制、固定闭塞方式,1个分区只能有1列车运行,其信号控制、无线通信与牵引供电三子系统间耦合更为紧密,对车地无线通信数据传输性能提出了更高的要求,牵引定位数据时延要求不大于5ms。  相似文献   

15.
基于各车站在各时段客流进站速率的协同优化,考虑客流控制和客流承载过程中的各种约束,以列车车厢内客流聚集总风险最低和乘客在车站总等待时间最短为双目标,构建疫情防控背景下的多车站地铁客流协同控制模型。针对模型的非线性特点,设计基于变邻域搜索的启发式算法进行求解。依托南昌地铁1号线实际客流数据构建算例进行验证。结果表明:实施客流协同控制后,研究时段内全部23列列车的满载率均未超过满载率阈值0.5,且客流聚集总风险值较控制前下降65.41%,乘客平均等待时间仅为3.87 min;随着列车最大满载率阈值的增加,乘客的等待时间呈指数下降趋势,而客流聚集风险则呈线性增长;缩短发车间隔时间能够有效降低列车满载率,但列车运行成本也会急剧增加;按实际发车间隔时间(10 min)实施客流协同控制后,所有列车的满载率均低于0.5,客流聚集总风险值下降22.36%,而乘客平均等待时间仅增加0.6 min,验证了模型及算法能更加高效地降低列车满载率。  相似文献   

16.
为研究宽频型调谐式钢轨阻尼器(Wide-frequency Tuned Mass Damper,简称WTMD)对抑制波磨和减小车内噪声的效果,基于WTMD设计原理及调频方法,通过前期测试得到钢轨波磨及噪声主频,从而确定WTMD型号,并在重庆地铁1号线双碑至石井坡上行高架桥曲线段进行了安装及现场试验研究,对同一半径(R=545 m)曲线内钢轨安装WTMD区段与未安装WTMD区段进行对比测试,测试结果表明:安装WTMD后可以改善钢轨动力特性,在安装WTMD后车厢内1.5 m处噪声降低7.2 dBA;安装WTMD后钢轨在250~5000 Hz频带内的阻尼特性得到明显改善,钢轨纵向振动衰减率分别在垂向和横向分别最大提升约28倍(3150 Hz)和17倍(1250 Hz);该改造段内钢轨波磨的特征波长为40 mm,433 d跟踪测试结束时未安装WTMD的钢轨表面粗糙度级最大超出TSI 3095:2010限值达28 dB,而安装WTMD段无明显钢轨波磨现象,安装WTMD能够有效抑制钢轨波磨的发展.  相似文献   

17.
为研究市域列车通过隧道的气动载荷变化规律,利用三维、瞬态可压缩的标准k-ε湍流模型计算了4节编组市域列车通过3种不同断面隧道时的气动效应,并分析了车体表面、隧道壁面及紧急疏散平台的压力时程变化。结果表明:(1)隧道A情况下的列车表面压力峰值为2 600 Pa,隧道壁面压力峰峰值为4 100 Pa;隧道B情况下的列车表面压力峰峰值为2 000 Pa,隧道壁面压力峰峰值为3 300 Pa;隧道C情况下的列车表面压力峰峰值为3 700 Pa,隧道壁面压力峰峰值为5 500 Pa; 3种不同断面各隧道条件下,紧急疏散平台处压力变化规律与隧道壁面压力变化规律基本一致。由此可见,隧道阻塞比越大,隧道内压力波变化越剧烈。(2)隧道A测点x(线路纵向)方向气流速度变化峰值为17 m/s,隧道B测点x方向气流速度变化峰值为32 m/s,隧道C内疏散平台测点x方向上的气流速度变化幅值最大,约为40 m/s,隧道A、B、C内疏散平台测点在y(线路横向)和z(线路竖向)方向上的速度变化不大。  相似文献   

18.
黄土地区近接路基段由于施工难度大,牵制条件多,且新建线建设对既有线会产生附加影响,成为铁路建设工程中的控制性工程。以实际工程为背景,结合静动荷载力学模型,基于各阶段监测数据,研究近接路基变形规律。结果表明,既有线填筑阶段,沉降值随时间的增长逐渐增大,前期增长速率快,后期增长速率低,采用修正的Burgers模型可高度拟合;既有线运营阶段,沉降随运营时间的增加而增加,运营约2.5年时基本稳定,采用循环荷载下力学模型可高度拟合;新建线旋喷桩复合地基施工阶段,隆起量随各排高压旋喷桩施工均呈现先增加后波动性减小的现象,且当旋喷桩施工至距离顶面1/3~2/3位置时,对既有线影响最大;随着垫层及路堤本体填筑高度的增加,附加沉降值均随填筑高度增加和距离帮宽侧路肩长度减小呈现非线性增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号